• Title/Summary/Keyword: artificial neural network system

Search Result 1,140, Processing Time 0.033 seconds

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정 : 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.365-373
    • /
    • 1999
  • Recently, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as a model construction process. Irrespective of the efficiency of a learning procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network models. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.

Compensation of a Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Park, Chiyeon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.182-186
    • /
    • 2004
  • This paper describes an advanced compensation for non-linear functions designed to remove steering aberrations from phased array antennas. This system alters the steering command applied to the antenna in a way that the appropriate angle commands are given to the array steering software for the antenna to point to the desired position instead of squinting. Artificial neural networks are used to develop the inverse function necessary to correct the aberration. Also a straightforward antenna steering function is implemented with neural networks for the 9-term polynomials of forward steering function. In all cases the aberration is removed resulting in small RMS angular errors across the operational angle space when the actual antenna position is compared with the desired position. The use of neural network model provides a method of producing a non-linear system that can correct antenna performance and demonstrates the feasibility of generating an inverse steering algorithm.

Predicting Korea Composite Stock Price Index Movement Using Artificial Neural Network (인공신경망을 이용한 한국 종합주가지수의 방향성 예측)

  • 박종엽;한인구
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.103-121
    • /
    • 1995
  • This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.

  • PDF

THE CROSSING APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT KANGNEUNG, KOREA

  • LEE MOUNG-JIN;WON JOONG-SUN;LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.363-366
    • /
    • 2004
  • The purpose of this study is to reveal the spatial relationship between landslides and geospatial data set and to map the landslide susceptibility using this relationship, and the landslide occurrence data in Kangneung area in 2002. Landslide locations were identified from interpretation of satellite images. Landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Susceptibility maps were constructed from Geographic Information System (GIS), The cases were overlaid and cross overlaid for landslide susceptibility mapping in each study area in Kangneung.

  • PDF

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

Determination of Initial Billet Size using The Artificial Neural Networks and The Finite Element Method for a Forged Product (신경망과 유한요소법을 이용한 단조품의 초기 소재 형상 결정)

  • 김동진;고대철;김병민;최재찬
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.214-221
    • /
    • 1995
  • In the paper, we have proposed a new method to determine the initial billet for the forged products using a function approximation in the neural network. The architecture of neural network is a three-layer neural network and the back propagation algorithm is employed to train the network. By utilizing the ability of function approximation of a neural network, an optimal billet is determined by applying the nonlinear mathematical relationship between the aspect ratios in the initial billet and the final products. The amount of incomplete filling in the die is measured by the rigid-plastic finite element method. The neural network is trained with the initial billet aspect ratios and those of the unfilled volumes. After learning, the system is able to predict the filling regions which are exactly the same or slightly different to the results of finite element simulation. This new method is applied to find the optimal billet size for the plane strain rib-web product in cold forging. This would reduce the number of finite element simulation for determining the optimal billet size of forging product, further it is usefully adapted to physical modeling for the forging design.

  • PDF

Practical BioSignal analysis for Nausea detection in VR environment (가상현실환경에서 멀미 측정을 위한 생리신호 분석)

  • Park, M.J.;Kim, H.T.;Park, K.S.
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.267-268
    • /
    • 2002
  • We developed nausea, caused by disorder of autonomic nervous system, detection system using bio-signal analysis and artificial neural network in virtual reality enironment. We used 16 bio-signals, 9 EEGs, EOG, ECG, SKT, PPG, GSR, RSP, EGC, which has own analysis methods. We estimated nausea level by artificial neural network.

  • PDF

A Comparative Analysis of Artificial Intelligence System and Ohlson model for IPO firm's Stock Price Evaluation (신규상장기업의 주가예측에 대한 연구)

  • Kim, Kwang-Yong;Lee, Gyeong-Rak;Lee, Seong-Weon
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.145-158
    • /
    • 2013
  • I estimate stock prices of listed companies using financial information and Ohlson model, which is used for the evaluation of company value. Furthermore, I use the artificial neural network, one of artificial intelligence systems, which are not based on linear relationship between variables, to estimate stock prices of listed companies. By reapplying this in estimating stock prices of newly listed companies, I evaluate the appropriateness in stock valuation with such methods. The result of practical analysis of this study is as follows. On the top of that, the multiplier for the actual stock price is accounted by generating the estimated stock prices based on the artificial neural network model. As a result of the comparison of two multipliers, the estimated stock prices by the artificial neural network model does not show statistically difference with the actual stock prices. Given that, the estimated stock price with artificial neural network is close to the actual stock prices rather than the estimated stock prices with Ohlson model.

Accurate Position Control of Hydraulic Motor Using NNGPC (NNGPC를 이용한 유압모터의 고정도 위치제어)

  • 박동재;안경관;이수한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.143-143
    • /
    • 2000
  • A neural net based generalized predictive control(NNGPC) is presented for a hydraulic servo position control system. The proposed scheme employs generalized predictive control, where the future output being generated from the output of artificial neural networks. The proposed NNGPC does not require an accurate mathematical model for the nonlinear hydraulic system and takes less calculation time than GPC algorithm if the teaming of neural network is done. Simulation studies have been conducted on the position control of a hydraulic motor to validate and illustrate the proposed method.

  • PDF