• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.035 seconds

Optimal Inner Case Design for Refrigerator by Utilizing Artificial Neural Networks and Genetic Algorithm

  • Zhai, Jianguang;Cho, Jong-Rae;Roh, Min-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.971-980
    • /
    • 2010
  • In this paper, an artificial neural network (ANN) was employed to build a predicting model for refrigerator structure. The predicting model includes three input variables of the plaque depth (D), width (W) and interval distance(S) on the inner wall. Finite element method was utilized to obtain the data, which would be necessary for the ANN training process. Finally, a genetic algorithm (GA) was applied to find the optimal parameters that leaded to the minimum inner case deformation under operating condition. The optimal combination found is the depth(D) of 2.63mm, the width(W) of 19.24mm and the interval distance(S) of 49.38mm which leaded to the smallest deformation of 1.88mm for the given refrigerator model.

Prediction on the fatigue life of butt-welded specimens using artificial neural network

  • Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2009
  • Fatigue tests for extremely thick plates require a great deal of manufacturing time and are expensive to perform. Therefore, if predictions could be made through simulation models such as an artificial neural network (ANN), manufacturing time and costs could be greatly reduced. In order to verify the effects of fatigue strength depending on the various factors in SM520C-TMC steels, this study constructed an ANN and conducted the learning process using the parameters of calculated stress concentration factor, thickness and input heat energy, etc. The results showed that the ANN could be applied to the prediction of fatigue life.

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Determination and application of the weights for landslide susceptibility mapping using an artificial neural network

  • Lee, Moung-Jin;Won, Joong-Sun;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.71-76
    • /
    • 2003
  • The purpose of this study is the development, application and assessment of probability and artificial neural network methods for assessing landslide susceptibility in a chosen study area. As the basic analysis tool, a Geographic Information System (GIS) was used for spatial data management. A probability method was used for calculating the rating of the relative importance of each factor class to landslide occurrence, For calculating the weight of the relative importance of each factor to landslide occurrence, an artificial neural network method was developed. Using these methods, the landslide susceptibility index was calculated using the rating and weight, and a landslide susceptibility map was produced using the index. The results of the landslide susceptibility analysis, with and without weights, were confirmed from comparison with the landslide location data. The comparison result with weighting was better than the results without weighting. The calculated weight and rating can be used to landslide susceptibility mapping.

  • PDF

A Study on DC Motor Control based on Artificial Neural Networks (인공신경회로망에 기초한 직류모터제어에 관한 연구)

  • 박진현;김영규
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.44-52
    • /
    • 1994
  • In this paper, we assume that the dynamics of DC motor and nonlinear load are unknown. We propose an inverse dynamic model of DC motor and nonlinear load using the artificial neural network and construck speed control system based on the proposed dynamic model. We also propose another dynamic model with speed prediction scheme using the artificial neural network that removes the undesirable time delay effect caused by the computation time during the real-time control. We suggest a dynamic model which has arbitrary number of speed arguments and is especially effective when the motor and load has large moment of inertia. Next, we suggest a controller that combine the neurocontrol and PID control with constant gain. We show that the proposed neurocontrol systems have capabilities of noise rejection and generalization to have good velocity tracking through computer simulations and experiments.

  • PDF

Sloshing Reduction Optimization of Storage Tank Using Evolutionary Method (진화적 기법을 이용한 유체저장탱크의 슬로싱 저감 최적화)

  • 김현수;이영신;김승중;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.410-415
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is call ed sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircraft, and liquid rocket. This sloshing effect could be a severe problem in vehicle stability and control. In this study, the optimization design technique for reduction of the sloshing using evolutionary method is suggested. Two evolutionary methods are employed, respectively the artificial neural network(ANN) and genetic algorithm. An artificial neural network is used for the analysis of sloshing and genetic algorithm is adopted as optimization algorithm. As a result of optimization design, the optimized size and location of the baffle is presented

  • PDF

Artificial neural network application to solute transport through unsaturated zone

  • Yoon, Hee-Sung;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.307-311
    • /
    • 2004
  • The unsaturated zone is a significant pathway of the surface contaminant movement and is a highly heterogeneous medium. Therefore, there are limitations in applying conventional convection-dispersion equation(CDE). Artificial neural network(ANN) is considered to be a versatile tool for approximating complex functions. For evaluating the applicability of ANN, numerical tests using ANN were conducted with training set generated by HYDRUS-2D which is based on CDE. The results represent that ANN can estimate the solute transport and the choice of network parameters and generation of training set patterns are important for efficient estimation.

  • PDF

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.

Multidisciplinary Design Optimization of 3-Stage Axial Compressorusing Artificial Neural Net (인공신경망 이론을 적용한 3단 축류압축기의 다분야 통합 최적설계)

  • Hong, Sang-Won;Lee, Sae-Il;Kang, Hyung-Min;Lee, Dong-Ho;Kang, Young-Seok;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.19-24
    • /
    • 2010
  • The demands for small, high performance and high loaded aircraft compressor are increased in the world. But the design requirements become increasingly complex to design these high technical engines, the requirement of the design optimization become increased. The optimal design result of several disciplines show different tendencies and nonlinear characteristics of the compressor design, the multidisciplinary design optimization method must be considered in compressor design. Therefore, the artificial Neural Net method is adapted to make the approximation model of 3-stage axial compressor design optimization for considering the nonlinear characteristic. At last, the optimal result of this study is compared to that of previous study.

Automatic Grading Algorithm for White Ginseng (백삼 등급 자동판정 알고리즘 개발)

  • 김철수;이종호;박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.607-614
    • /
    • 1998
  • An automatic grading algorithm was developed to replace the manual trading of white ginseng. The algorithm consists of three consecutive stages, (a) image acquisition and preprocessing, (b) mathematical feature extraction, and (c) grade decision using artificial neural network. Mathematical features such as area ratio, mean and standard deviation of graylevel, skewness of graylevel histogram, and the number of run segment are extracted from five equally divided parts of ginseng. An artificial neural network model was used to classify white ginsengs into three categories. The performance of the algorithm was evaluated using 120 ginseng samples and the rate of successful classification was 74%.

  • PDF