References
- AASHTO LRFD Bridge Design Specification (2002), U.S. Units 2002, Interim Revisions.
- Al-Jabri, K.S. and Al-Alawi, S.M. (2007), "Predicting the behavior of semi-rigid joints in fire using an artificial neural networks", Int. J. Steel Struct., 7(3), 209-217.
- Amanullah, M., Siddiqui, N.A., Umar, A. and Abbas, H. (2002), "Fatigue reliability analysis of welded joints of a TLP tether system", Steel Compos. Struct., 2(5), 331-354. https://doi.org/10.12989/scs.2002.2.5.331
- Ayala-Uraga, E. and Moan, T. (2007), "Fatigue reliability assessment of welded joints applying consistent fracture mechanics formulations", Int. J. fatigue, 29, 444-456. https://doi.org/10.1016/j.ijfatigue.2006.05.010
- Bezazi, A., Gareth Pierce, S., Worden, K. and Harkati, E.H. (2007), "Fatigue life prediction of sandwith composite materials under flexural tests using a Bayesian trained artificial neural network", Int. J. fatigue, 29, 738-747. https://doi.org/10.1016/j.ijfatigue.2006.06.013
- Do, Y.T., Kim, I.G., Kim, J.W. and Park, C.H. (2001), Artificial intelligence-Concept and Application, Scitech Media, Korea.
- Fathi, A. and Aghakouchak, A.A. (2007), "Prediction of fatigue crack growth rate in welded tubular joints using neural network", Int. J. fatigue, 29, 261-275. https://doi.org/10.1016/j.ijfatigue.2006.03.002
- Kang, J.Y., Choi, B.I., Lee, H.J., Kim, J.S. and Kim, K.J. (2006), "Neural network application in fatigue damage analysis under multiaxial random loadings", Int. J. fatigue, 28, 132-140. https://doi.org/10.1016/j.ijfatigue.2005.04.012
- Kim, J.T., Park, J.H., Koo, K.Y. and Lee, J.J (2008), "Acceleration-based neural networks algorithm for damage detection in structures", Smart Struct. Syst., 4(5), 583-603. https://doi.org/10.12989/sss.2008.4.5.583
- Kim, K.N., Lee, S.H. and Jung, K.S. (2009), "Evaluation of factors affecting the fatigue behavior of buttwelded joints using SM520C-TMC Steel", Int. J. Steel Struct., 9(3), 185-193. https://doi.org/10.1007/BF03249493
- Lee, Y.L., Tjhung, T. and Jordan, A. (2007), "A life prediction model for welded joints under multiaxial variable amplitude loading histories", Int. J. fatigue, 29, 1162-1173. https://doi.org/10.1016/j.ijfatigue.2006.09.014
- Li, B., Reis, L. and Freitas, M.D. (2006), "Simulation of cyclic stress/strain evolutions for multiaxial fatigue life prediction", Int. J. fatigue, 28, 451-458. https://doi.org/10.1016/j.ijfatigue.2005.07.038
- Majidian, A. and Saidi, M.H. (2007), "Comparison of Fuzzy logic and Neural Network in life prediction of boiler tubes", Int. J. fatigue, 29, 489-498. https://doi.org/10.1016/j.ijfatigue.2006.05.001
- McCulloch, W.S. and Pitts, W. (1943), "A Logical Calculus of the Ideas Imminent in Nervous Activity", B. Math. Bio., 5, 115-133. https://doi.org/10.1007/BF02478259
- Nishida, M. (1971), Stress Concentration, Morikita Ink, Japan.
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), Learning Internal Representation by Error Propagation, Parallel Distributed Processing, Vol. 1, MIT Press.
- Yi, J.H., Yun, C.B. and Feng, M.Q. (2003), "Model updating and joint damage assessment for steel frame structures using structural identification techniques", Int. J. Steel Struct., 3(2), 83-94.
Cited by
- Prediction of the flexural overstrength factor for steel beams using artificial neural network vol.17, pp.3, 2014, https://doi.org/10.12989/scs.2014.17.3.215
- Structural damage detection of steel bridge girder using artificial neural networks and finite element models vol.14, pp.4, 2009, https://doi.org/10.12989/scs.2013.14.4.367
- 인공신경망을 이용한 강박스거더의 유효온도 산정 vol.19, pp.3, 2018, https://doi.org/10.5762/kais.2018.19.3.96