• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.037 seconds

Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network (순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발)

  • Lee, Jung-Hwan;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

Preform Design of the Bevel Gear for the Warm Forging using Artificial Neural Network (신경망을 이용한 정밀 베벨기어의 온간단조 예비성형체 설계)

  • 김동환;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.

Rotor Position Estimation Strategy Using Artificial Neural Network for a Novel Design Transverse Flux Machine

  • Turker, Cigdem Gundogan;Kuyumcu, Feriha Erfan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2009-2017
    • /
    • 2015
  • The E-Core Transverse Flux Machine is a different design of transverse flux machines combined with reluctance principle. Determination of the rotor position is important for the movement of the ETFM by switching the phase currents in synchronism with the inductance regions of the stator windings. It is the first time that rotor position estimation based on Artificial Neural Network (ANN) is purposed to eliminate the position sensor for the ETFM. Simulation and experimental tests are demonstrated for the feasibility of the proposed estimation algorithm for the exercise bike application of the ETFM.

Static Switch Controller Based on Artificial Neural Network in Micro-Grid Systems

  • Saeedimoghadam, Mojtaba;Moazzami, Majid;Nabavi, Seyed. M.H.;Dehghani, Majid
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1822-1831
    • /
    • 2014
  • Micro-grid is connected to the main power grid through a static switch. One of the critical issues in micro-grids is protection which must disconnect the micro-grid from the network in short-circuit contingencies. Protective methods of micro-grid mainly follow the model of distribution system protection. This protection scheme suffers from improper operation due to the presence of single-phase loads, imbalance of three-phase loads and occurrence of power swings in micro-grid. In this paper, a new method which prevents from improper performance of static micro-grid protection is proposed. This method works based on artificial neural network (ANN) and able to differentiate short circuit from power swings by measuring impedance and the rate of impedance variations in PCC bus. This new technique provides a protective system with higher reliability.

Displacement prediction of precast concrete under vibration using artificial neural networks

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.559-565
    • /
    • 2020
  • This paper intends to progress models to accurately estimate the behavior of fresh concrete under vibration using artificial neural networks (ANNs). To this end, behavior of a full scale precast concrete mold was investigated numerically. Experimental study was carried out under vibration with the use of a computer-based data acquisition system. In this study measurements were taken at three points using two vibrators. Transducers were used to measure time-dependent lateral displacements at these points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using ANNs. Benefiting ANNs used in this study for modeling fresh concrete, mold design can be performed. For the modeling of ANNs: Experimental data were divided randomly into two parts such as training set and testing set. Training set was used for ANN's learning stage. And the remaining part was used for testing the ANNs. Finally, ANN modeling was compared with measured data. The comparisons show that the experimental data and ANN results are compatible.

Defect Diagnostics of Gas Turbine Engine with Altitude Variation Using SVM and Artificial Neural Network (SVM과 인공신경망을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee Sang-Myeong;Choi Won-Jun;Roh Tae-Seong;Choi Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.209-212
    • /
    • 2006
  • In this study, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. Effect of altitude variation on the Defect Diagnostics algorithm has been included and evaluated. Separate learning Algorithm(SLA) suggested with ANN to loam the performance data selectively after classifying the position of defects by SVM improves the classification speed and accuracy.

  • PDF

The Permanent Deformation of Asphalt Pavement by Artificial Neural Networks (인공신경망을 이용한 아스팔트포장의 소성변형파손모형)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.3100-3105
    • /
    • 2010
  • The permanent deformation of asphalt pavement is one of the most important load-related distresses in asphalt pavement. In order to evaluate the permanent deformation, the repeated triaxial load test with different temperature and air void of hot mix asphalt was carried out. The permanent deformation prediction model has been validated by the multiple regression approach and the artificial neural networks.

Using Genetic Algorithms to Support Artificial Neural Networks for the Prediction of the Korea stock Price Index

  • Kim, Kyoung-jae;Ingoo han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.347-356
    • /
    • 2000
  • This paper compares four models of artificial neural networks (ANN) supported by genetic algorithms the prediction of stock price index. Previous research proposed many hybrid models of ANN and genetic algorithms(GA) in order to train the network, to select the feature subsets, and to optimize the network topologies. Most these studies, however, only used GA to improve a part of architectural factors of ANN. In this paper, GA simultaneously optimized multiple factors of ANN. Experimental results show that GA approach to simultaneous optimization for ANN (SOGANN3) outperforms the other approaches.

  • PDF

THE CROSSING APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT KANGNEUNG, KOREA

  • LEE MOUNG-JIN;WON JOONG-SUN;LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.363-366
    • /
    • 2004
  • The purpose of this study is to reveal the spatial relationship between landslides and geospatial data set and to map the landslide susceptibility using this relationship, and the landslide occurrence data in Kangneung area in 2002. Landslide locations were identified from interpretation of satellite images. Landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Susceptibility maps were constructed from Geographic Information System (GIS), The cases were overlaid and cross overlaid for landslide susceptibility mapping in each study area in Kangneung.

  • PDF

An apt material model for drying shrinkage and specific creep of HPC using artificial neural network

  • Gedam, Banti A.;Bhandari, N.M.;Upadhyay, Akhil
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.97-113
    • /
    • 2014
  • In the present work appropriate concrete material models have been proposed to predict drying shrinkage and specific creep of High-performance concrete (HPC) using Artificial Neural Network (ANN). The ANN models are trained, tested and validated using 106 different experimental measured set of data collected from different literatures. The developed models consist of 12 input parameters which include quantities of ingredients namely ordinary Portland cement, fly ash, silica fume, ground granulated blast-furnace slag, water, and other aggregate to cement ratio, volume to surface area ratio, compressive strength at age of loading, relative humidity, age of drying commencement and age of concrete. The Feed-forward backpropagation networks with Levenberg-Marquardt training function are chosen for proposed ANN models and same implemented on MATLAB platform. The results shows that the proposed ANN models are more rational as well as computationally more efficient to predict time-dependent properties of drying shrinkage and specific creep of HPC with high level accuracy.