• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.034 seconds

Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network (인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가)

  • Khaliunaa Darkhanbat;Inwook Heo;Seung-Ho Choi;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.144-151
    • /
    • 2023
  • In this study, a database was established by collecting experimental results on various concrete mixtures subjected to freeze-thaw cycles, based on which an artificial neural network-based prediction model was developed to estimate durability resistance of concrete. A regression analysis was also conducted to derive an equation for estimating relative dynamic modulus of elasticity subjected to freeze-thaw loads. The error rate and coefficient of determination of the proposed artificial neural network model were approximately 11% and 0.72, respectively, and the regression equation also provided very similar accuracy. Thus, it is considered that the proposed artificial neural network model and regression equation can be used for estimating relative dynamic modulus of elasticity for various concrete mixtures subjected to freeze-thaw loads.

An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks

  • Parichatprecha, Rattapoohm;Nimityongskul, Pichai
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.253-268
    • /
    • 2009
  • This study aims to develop a cost-based high-performance concrete (HPC) mix optimization system based on an integrated approach using artificial neural networks (ANNs) and genetic algorithms (GA). ANNs are used to predict the three main properties of HPC, namely workability, strength and durability, which are used to evaluate fitness and constraint violations in the GA process. Multilayer back-propagation neural networks are trained using the results obtained from experiments and previous research. The correlation between concrete components and its properties is established. GA is employed to arrive at an optimal mix proportion of HPC by minimizing its total cost. A system prototype, called High Performance Concrete Mix-Design System using Genetic Algorithm and Neural Networks (HPCGANN), was developed in MATLAB. The architecture of the proposed system consists of three main parts: 1) User interface; 2) ANNs prediction models software; and 3) GA engine software. The validation of the proposed system is carried out by comparing the results obtained from the system with the trial batches. The results indicate that the proposed system can be used to enable the design of HPC mix which corresponds to its required performance. Furthermore, the proposed system takes into account the influence of the fluctuating unit price of materials in order to achieve the lowest cost of concrete, which cannot be easily obtained by traditional methods or trial-and-error techniques.

The Research About Free Piston Linear Engine with Artificial Neural Network (인공 신경망을 이용한 프리피스톤 리니어 엔진의 연구)

  • AHMED, TUSHAR;HUNG, NGUYEN BA;LIM, OCKTAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.294-299
    • /
    • 2015
  • Free piston linear engine (FPLE) is a promising concept being explored in the mid-20th century. On the other hand, Arficial neural networks (ANNs) are non-linear computer algorithms and can model the behavior of complicated non-linear processes. Some researchers already studied this method to predict internal combustion engine characteristics. However, no investigation to predict the performance of a FPLE using ANN approach appears to have been published in the literature to date. In this study, the ability of an artificial neural network model, using a back propagation learning algorithm has been used to predict the in-cylinder pressure, frequency, maximum stroke length of a free piston linear engine. It is advised that, well-trained neural network models can provide fast and consistent results, making it an easy-to-use tool in preliminary studies for such thermal engineering problems.

A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$ Arc Welding (인공신경회로망을 이용한 탄산가스 아크 용접의 잔류응력 예측에 관한 연구)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.77-88
    • /
    • 1995
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO$_{2}$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a backpropagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the ailure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

  • Nazemi, E.;Feghhi, S.A.H.;Roshani, G.H.;Gholipour Peyvandi, R.;Setayeshi, S.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas-liquid two-phase flows by using ${\gamma}-ray$ attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam ${\gamma}-ray$ attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly) were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

Structural damage identification based on genetically trained ANNs in beams

  • Li, Peng-Hui;Zhu, Hong-Ping;Luo, Hui;Weng, Shun
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.227-244
    • /
    • 2015
  • This study develops a two stage procedure to identify the structural damage based on the optimized artificial neural networks. Initially, the modal strain energy index (MSEI) is established to extract the damaged elements and to reduce the computational time. Then the genetic algorithm (GA) and artificial neural networks (ANNs) are combined to detect the damage severity. The input of the network is modal strain energy index and the output is the flexural stiffness of the beam elements. The principal component analysis (PCA) is utilized to reduce the input variants of the neural network. By using the genetic algorithm to optimize the parameters, the ANNs can significantly improve the accuracy and convergence of the damage identification. The influence of noise on damage identification results is also studied. The simulation and experiment on beam structures shows that the adaptive parameter selection neural network can identify the damage location and severity of beam structures with high accuracy.

A Comparative Study between the Parameter-Optimized Pacejka Model and Artificial Neural Network Model for Tire Force Estimation (타이어 힘 추정을 위한 파라미터 최적화 파제카 모델과 인공 신경망 모델 간의 비교 연구)

  • Cha, Hyunsoo;Kim, Jayu;Yi, Kyongsu;Park, Jaeyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.33-38
    • /
    • 2021
  • This paper presents a comparative study between the parameter-optimized Pacejka model and artificial neural network model for the tire force estimation. The two different approaches are investigated and compared in this study. First, offline optimization is conducted based on Pacejka Magic Formula model to determine the proper parameter set for the minimization of tire force error between the model and test data set. Second, deep neural network model is used to fit the model to the tire test data set. The actual tire forces are measured using MTS Flat-Track test platform and the measurements are used as the reference tire data set. The focus of this study is on the applicability of machine learning technique to tire force estimation. It is shown via the regression results that the deep neural network model is more effective in describing the tire force than the parameter-optimized Pacejka model.

Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측)

  • Kim, Dayeon;Seo, Jeongbeom;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.

Consciousness, Cognition and Neural Networks in the Brain: Advances and Perspectives in Neuroscience

  • Muhammad Saleem;Muhammad Hamid
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.47-54
    • /
    • 2023
  • This article reviews recent advances and perspectives in neuroscience related to consciousness, cognition, and neural networks in the brain. The neural mechanisms underlying cognitive processes, such as perception, attention, memory, and decision-making, are explored. The article also examines how these processes give rise to our experience of consciousness. The implications of these findings for our understanding of the brain and its functions are presented, as well as potential applications of this knowledge in fields such as medicine, psychology, and artificial intelligence. Additionally, the article explores the concept of a quantum viewpoint concerning consciousness, cognition, and creativity and how incorporating DNA as a key element could reconcile classical and quantum perspectives on human behaviour, consciousness, and cognition, as explained by genomic psychological theory. Furthermore, the article explains how the human brain processes external stimuli through the sensory nervous system and how it can be simulated using an artificial neural network (ANN) consisting of one input layer, multiple hidden layers, and an output layer. The law of learning is also discussed, explaining how ANNs work and how the modification of weight values affects the output and input values. The article concludes with a discussion of future research directions in this field, highlighting the potential for further discoveries and advancements in our understanding of the brain and its functions.

Artificial Neural Networks for Flood Forecasting Using Partial Mutual Information-Based Input Selection

  • Jae Gyeong Lee;Li Li;Kyung Soo Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.363-363
    • /
    • 2023
  • Artificial Neural Networks (ANN) is a powerful tool for addressing various practical problems and it has been extensively applied in areas of water resources. In this study, Artificial Neural Networks (ANNs) were developed for flood forecasting at specific locations on the Han River. The Partial Mutual Information (PMI) technique was used to select input variables for ANNs that are neither over-specified nor under-specified while adequately describing the underlying input-output relationships. Historical observations including discharges at the Paldang Dam, flows from tributaries, water levels at the Paldang Bridge, Banpo Bridge, Hangang Bridge, and Junryu gauge station, and time derivatives of the observed water levels were considered as input candidates. Lagged variables from current time t to the previous five hours were assumed to be sufficient in this study. A three-layer neural network with one hidden layer was used and the neural network was optimized by selecting the optimal number of hidden neurons given the selected inputs. Given an ANN architecture, the weights and biases of the network were determined in the model training. The use of PMI-based input variable selection and optimized ANNs for different sites were proven to successfully predict water levels during flood periods.

  • PDF