• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.043 seconds

A Study on Subsidence of Soft Ground Using Artificial Neural Network (인공신경망을 이용한 DCM 처리된 연약지반 침하에 대한 연구)

  • Kang, Yoon-Kyung;Jang, Won-Yil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • When industrial structures are constructed on soft ground, ground subsidence is occurred by problems of bearing capacity. To protect ground subsidence have to improve soft ground, and have to predict settlement estimation for reasonable construction. Artificial Neural Networks(ANN) is adopted for prediction of settlement of construction during the initial design. In the study, Artificial Neural Networks are applied to predict the settlement estimation of initial condition ground and ground improved by D.C.M method. Also, this study compares results of Artificial Neural Networks and results of continuum analysis using Mohr-Coulomb models. In result, settlements of initial condition ground decreased over 0.7 times. Also, by comparing ANN and continuum analysis, coefficient of determination was comparatively high value 0.79. Thought this study, it was confirmed that settlements of improvement ground is predicted using laboratory experiment data.

Development of Artificial Neural Network Techniques for Landslide Susceptibility Analysis (산사태 취약성 분석 연구를 위한 인공신경망 기법 개발)

  • Chang, Buhm-Soo;Park, Hyuck-Jin;Lee, Saro;Juhyung Ryu;Park, Jaewon;Lee, Moung-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.499-506
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural networks and to apply the newly developed techniques for assessment of landslide susceptibility to the study area of Yongin in Korea. Landslide locations were identified in the study area from interpretation of aerial Photographs and field survey data, and a spatial database of the topography, soil type and timber cover were constructed. The landslide-related factors such as topographic slope, topographic curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter were extracted from the spatial database. Using those factors, landslide susceptibility and weights of each factor were analyzed by two artificial neural network methods. In the first method, the landslide susceptibility index was calculated by the back propagation method, which is a type of artificial neural network method. Then, the susceptibility map was made with a GIS program. The results of the landslide susceptibility analysis were verified using landslide location data. The verification results show satisfactory agreement between the susceptibility index and existing landslide location data. In the second method, weights of each factor were determinated. The weights, relative importance of each factor, were calculated using importance-free characteristics method of artificial neural networks.

  • PDF

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

Refinement of Projection Map Based on Artificial Neural Networks to Represent Noise-Reduced Foam Effects (노이즈가 완화된 거품 효과를 표현하기 위한 인공신경망 기반의 투영맵 정제)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.4
    • /
    • pp.11-24
    • /
    • 2021
  • In this paper, we propose an artificial neural network framework that can represent the foam effects expressed in liquid simulation in detail without noise. The position and advection of foam particles are calculated using the existing screen projection method, and the noise problem that appears in this process is solved through an proposed artificial neural network. The important thing in the screen projection approach is the projection map, but noise occurs in the projection map in the process of projecting momentum into the discretized screen space, and we efficiently solve this problem by using an artificial neural network-based denoising network. When the foam generating area is selected through the projection map, 2D is inversely transformed into 3D space to generate foam particles. We solve the existing denoising network problem in which small-scaled foam particles disappear. In addition, by integrating the proposed algorithm with the screen-space projection framework, all the advantages of this approach can be accommodated. As a result, it shows through various experiments whether it is possible to stably represent not only the clean foam effects but also the foam particles lost due to the denoising process.

Comparison of Ordinary Kriging and Artificial Neural Network for Estimation of Ground Profile Information in Unboring Region (미시추 구간의 지반 층상정보 예측을 위한 정규 크리깅 및 인공신경망 기법의 비교)

  • Chun, Chanjun;Choi, Changho;Cho, Jinwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.15-20
    • /
    • 2019
  • A large amount of site investigation data is essential to obtain reliable design value. However, site investigations are generally insufficient due to economic problems. It is important to estimate the ground profile information in unboring region for accurate earthwork-volume prediction, and such ground profile information can be estimated by using the geo-statistical approach. Furthermore, the ground profile information in unboring region can be estimated by training a model via machine learning technique such as artificial neural network. In this paper, artificial neural network-based model estimated the ground profile information in unboring region, and this results were compared with that of ordinary kriging technique, which is referred to the geo-statistical approach. Accordingly, a total of 84 ground profile information in an actual bridge environment was split into 75 training and 9 test databases. The observed ground profile information of the test database was compared with those of the ordinary kriging technique and artificial neural network.

Analysis of Drought Vulnerable Areas using Neural-Network Algorithm (인공신경망 알고리즘을 활용한 가뭄 취약지역 분석)

  • Shin, Jeong Hoon;Kim, Jun Kyeong;Yeom, Min Kyo;Kim, Jin Pyeong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.329-340
    • /
    • 2021
  • Purpose: In this paper, using artificial neural network algorithm, the Korean Peninsula was analyzed for drought vulnerable areas by predicting weather data changes. Method: Monthly cumulative precipitation data were utilized for research areas considering the specific nature areas, and weather data prediction through artificial neural network algorithm was carried out using statistical program R. The predicted data were applied to the Standardized Precipitation Index (SPI) to analyze drought vulnerable areas in the Korean Peninsula. Result: In this paper, the correlation coefficient values between real and predicted data are found to be 0.043879 higher on average than the regression results, using artificial neural network algorithms. Conclusion: The results of the research are expected to be used as basic research materials for responding to drought.

Forecasting Technique of Downstream Water Level using the Observed Water Level of Upper Stream (수계 상류 관측 수위자료를 이용한 하류 홍수위 예측기법)

  • Kim, Sang Mun;Choi, Byungwoong;Lee, Namjoo
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • Securing the lead time for evacuation is crucial to minimize flood damage. In this study, downstream water levels for heavy rainfall were predicted using measured water level observation data. Multiple regression analysis and artificial neural networks were applied to the Seom River experimental watershed to predict the water level. Water level observation data for the Seom River experimental watershed from 2002 to 2010 were used to perform the multiple regression analysis and to train the artificial neural networks. The water level was predicted using the trained model. The simulation results for the coefficients of determination of the artificial neural network level prediction ranged from 0.991 to 0.999, while those of the multiple regression analysis ranged from 0.945 to 0.990. The water level prediction model developed using an artificial neural network was better than the multiple-regression analysis model. This technique for forecasting downstream water levels is expected to contribute toward flooding warning systems that secure the lead time for streams.

Forecasting LNG Freight rate with Artificial Neural Networks

  • Lim, Sangseop;Ahn, Young-Joong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.187-194
    • /
    • 2022
  • LNG is known as the transitional energy source for the future eco-friendly, attracting enormous market attention due to global eco-friendly regulations, Covid-19 Pandemic, Russia-Ukraine War. In addition, since new LNG suppliers such as the U.S. and Australia are also diversifying, the LNG spot market is expected to grow. On the other hand, research on the LNG transportation market has been marginalized. Therefore, this study attempted to predict short-term LNG 160K spot rates and compared the prediction performance between artificial neural networks and the ARIMA model. As a result of this paper, while it was difficult to determine the superiority and superiority of ARIMA and artificial neural networks, considering the relative free of ANN's contraints, we confirmed the feasibility of ANN in LNG 160K spot rate prediction. This study has academic significance as the first attempt to apply an artificial neural network to forecasting LNG 160K spot rates and are expected to contribute significantly in practice in that they can improve the quality of short-term investment decisions by market participants by increasing the accuracy of short-term prediction.

Prediction of Fabric Drape Using Artificial Neural Networks (인공신경망을 이용한 드레이프성 예측)

  • Lee, Somin;Yu, Dongjoo;Shin, Bona;Youn, Seonyoung;Shim, Myounghee;Yun, Changsang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.978-985
    • /
    • 2021
  • This study aims to propose a prediction model for the drape coefficient using artificial neural networks and to analyze the nonlinear relationship between the drape properties and physical properties of fabrics. The study validates the significance of each factor affecting the fabric drape through multiple linear regression analysis with a sample size of 573. The analysis constructs a model with an adjusted R2 of 77.6%. Seven main factors affect the drape coefficient: Grammage, extruded length values for warp and weft (mwarp, mweft), coefficients of quadratic terms in the tensile-force quadratic graph in the warp, weft, and bias directions (cwarp, cweft, cbias), and force required for 1% tension in the warp direction (fwarp). Finally, an artificial neural network was created using seven selected factors. The performance was examined by increasing the number of hidden neurons, and the most suitable number of hidden neurons was found to be 8. The mean squared error was .052, and the correlation coefficient was .863, confirming a satisfactory model. The developed artificial neural network model can be used for engineering and high-quality clothing design. It is expected to provide essential data for clothing appearance, such as the fabric drape.

Artificial neural network model for predicting sex using dental and orthodontic measurements

  • Sandra Anic-Milosevic;Natasa Medancic;Martina Calusic-Sarac;Jelena Dumancic;Hrvoje Brkic
    • The korean journal of orthodontics
    • /
    • v.53 no.3
    • /
    • pp.194-204
    • /
    • 2023
  • Objective: To investigate sex-specific correlations between the dimensions of permanent canines and the anterior Bolton ratio and to construct a statistical model capable of identifying the sex of an unknown subject. Methods: Odontometric data were collected from 121 plaster study models derived from Caucasian orthodontic patients aged 12-17 years at the pretreatment stage by measuring the dimensions of the permanent canines and Bolton's anterior ratio. Sixteen variables were collected for each subject: 12 dimensions of the permanent canines, sex, age, anterior Bolton ratio, and Angle's classification. Data were analyzed using inferential statistics, principal component analysis, and artificial neural network modeling. Results: Sex-specific differences were identified in all odontometric variables, and an artificial neural network model was prepared that used odontometric variables for predicting the sex of the participants with an accuracy of > 80%. This model can be applied for forensic purposes, and its accuracy can be further improved by adding data collected from new subjects or adding new variables for existing subjects. The improvement in the accuracy of the model was demonstrated by an increase in the percentage of accurate predictions from 72.0-78.1% to 77.8-85.7% after the anterior Bolton ratio and age were added. Conclusions: The described artificial neural network model combines forensic dentistry and orthodontics to improve subject recognition by expanding the initial space of odontometric variables and adding orthodontic parameters.