DOI QR코드

DOI QR Code

Prediction of Fabric Drape Using Artificial Neural Networks

인공신경망을 이용한 드레이프성 예측

  • Lee, Somin (Dept. of Fashion Industry, Ewha Womans University) ;
  • Yu, Dongjoo (Dept. of Fashion Industry, Ewha Womans University) ;
  • Shin, Bona (Dept. of Fashion Industry, Ewha Womans University) ;
  • Youn, Seonyoung (Dept. of Textile Engineering, Chemistry, and Science, North Carolina State University) ;
  • Shim, Myounghee (Korea Textile Trade Association) ;
  • Yun, Changsang (Dept. of Fashion Industry, Ewha Womans University)
  • 이소민 (이화여자대학교 의류산업학과) ;
  • 유동주 (이화여자대학교 의류산업학과) ;
  • 신보나 (이화여자대학교 의류산업학과) ;
  • 윤선영 ;
  • 심명희 (한국섬유수출입협회) ;
  • 윤창상 (이화여자대학교 의류산업학과)
  • Received : 2021.07.16
  • Accepted : 2021.09.06
  • Published : 2021.12.31

Abstract

This study aims to propose a prediction model for the drape coefficient using artificial neural networks and to analyze the nonlinear relationship between the drape properties and physical properties of fabrics. The study validates the significance of each factor affecting the fabric drape through multiple linear regression analysis with a sample size of 573. The analysis constructs a model with an adjusted R2 of 77.6%. Seven main factors affect the drape coefficient: Grammage, extruded length values for warp and weft (mwarp, mweft), coefficients of quadratic terms in the tensile-force quadratic graph in the warp, weft, and bias directions (cwarp, cweft, cbias), and force required for 1% tension in the warp direction (fwarp). Finally, an artificial neural network was created using seven selected factors. The performance was examined by increasing the number of hidden neurons, and the most suitable number of hidden neurons was found to be 8. The mean squared error was .052, and the correlation coefficient was .863, confirming a satisfactory model. The developed artificial neural network model can be used for engineering and high-quality clothing design. It is expected to provide essential data for clothing appearance, such as the fabric drape.

Keywords

Acknowledgement

본 논문은 2020년도 한국산업기술진흥원 산업기술기반 구축혁신사업의 지원을 받아 수행된 연구임(No. P114000015).

References

  1. Admuthe, L. S., & Apte, S. (2010). Adaptive neuro-fuzzy inference system with subtractive clustering: A model to predict fiber and yarn relationship. Textile Research Journal, 80(9), 841-846. doi:10.1177/0040517509355344
  2. Bi, W., Jin, P., Nienborg, H., & Xiao, B. (2018). Estimating mechanical properties of cloth from videos using dense motion trajectories: Human psychophysics and machine learning. Journal of Vision, 18(5):12. doi:10.1167/18.5.12
  3. Carrera-Gallissa, E., Capdevila, X., & Valldeperas, J. (2017). Evaluating drape shape in woven fabrics. The Journal of the Textile Institute, 108(3), 325-336. doi:10.1080/00405000.2016.1166804
  4. Chu, C. C., Cummings, C. L., & Teixeira, N. A. (1950). Mechanics of elastic performance of textile materials: Part V: A study of the factors affecting the drape of fabrics-The development of a drape meter. Textile Research Journal, 20(8), 539-548. doi:10.1177/004051755002000802
  5. Collier, B. J. (1991). Measurement of fabric drape and its relation to fabric mechanical properties and subjective evaluation. Clothing and Textiles Research Journal, 10(1), 46-52. doi:10.1177/0887302X9101000107
  6. Collier, B. J., Paulins, V. A., & Collier, J. R. (1989). Effects of interfacing type on shear and drape behavior of apparel fabrics. Clothing and Textiles Research Journal, 7(3), 51-56. doi:10.1177/0887302X8900700308
  7. Demiryurek, O., & Koc, E. (2009). Predicting the unevenness of polyester/viscose blended open-end rotor spun yarns using artificial neural network and statistical models. Fibers and Polymers, 10(2), 237-245. doi:10.1007/s12221-009-0237-z
  8. International Organization for Standardization. (1977, September). ISO 3801:1977 Textiles - Woven fabrics - Determination of mass per unit length and mass per unit area. ISO. Retrieved from https://www.iso.org/standard/9335.html
  9. International Organization for Standardization. (2008, April). ISO 9073-9:2008 Textiles - Test methods for nonwovens - Part 9: Determination of drapability including drape coefficient. ISO. Retrieved from https://www.iso.org/standard/41375.html
  10. Jeong, Y. J., Min, B. G., & Lee, J. S. (1999). A study on the repeatability of fabric drape. Journal of the Korean Society for Clothing Industry, 1(1), 50-55.
  11. Kanat, Z. E., & Ozdil, N. (2018). Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. The Journal of The Textile Institute, 109(9), 1247-1253. doi:10.1080/00405000.2017.1423003
  12. Kim, H. J., Youn, S., Choi, J., Kim, H., Shim, M., & Yun, C. (2021). Indexing surface smoothness and fiber softness by sound frequency analysis for textile clustering and classification. Textile Research Journal, 91(1-2), 200-218. doi:10.1177/0040517520935211
  13. Kim, J., Kim, Y. J., Shim, M., Jun, Y., & Yun, C. (2020). Prediction and categorization of fabric drapability for 3D garment virtualization. International Journal of Clothing Science and Technology, 32(4), 523-535. doi:10.1108/IJCST-08-2019-0126
  14. Kim, J. S. (2020). 빅데이터 분석을 위한 R 프로그래밍 (2nd Edition) [R programming for big data analysis (2nd ed.)]. Seoul: Kame.
  15. Matusiak, M. (2015). Application of artificial neural networks to predict the air permeability of woven fabrics. FIBRES & TEXTILES in Eastern Europe, 23(1(109)), 41-48. https://doi.org/10.5604/12303666.1167418
  16. Mitra, A., Majumdar, A., Majumdar, P. K., & Banerjee, D. (2012). Comparative analysis of regression and ANN models for predicting drape coefficient of handloom fabrics. Indian Journal of Fibre & Textile Research, 37(4), 313-320.
  17. Morooka, H., & Niwa, M. (1976). Relation between drape coefficients and mechanical properties of fabrics. Journal of The Textile Machinery Society of Japan, 22(3), 67-73. doi:10.4188/jte1955.22.67
  18. Niwa, M., & Seto, F. (1986). Relationship between drapability and mechanical properties of fabrics. Sen'i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan), 39(11), T161-T168. doi:10.4188/transjtmsj.39.11_T161
  19. Park, H. (2016). 신경회로망을 이용한 데이터 분석 [Data analysis using neural networks]. Seoul: CHAOS BOOK.
  20. Pattanayak, A. K., Luximon, A., & Khandual, A. (2011). Prediction of drape profile of cotton woven fabrics using artificial neural network and multiple regression method. Textile Research Journal, 81(6), 559-566. doi:10.1177/0040517510380783
  21. Peirce, F. T. (1930). 26-The "handle" of cloth as a measurable quantity. Journal of the Textile Institute Transactions, 21(9), T377-T416. doi:10.1080/19447023008661529
  22. Rolich, T., Sajatovic, A. H., & Pavlinic, D. Z. (2010). Application of artificial neural network (ANN) for prediction of fabrics' extensibility. Fibers and Polymers, 11(6), 917-923. doi:10.1007/s12221-010-0917-8
  23. Sanad, R., Cassidy, T., & Cheung, V. (2012). Fabric and garment drape measurement - Part 1. Journal of Fiber Bioengineering and Informatics, 5(4), 341-358. doi:10.3993/jfbi12201201
  24. Sule, G. (2012). Investigation of bending and drape properties of woven fabrics and the effects of fabric constructional parameters and warp tension on these properties. Textile Research Journal, 82(8), 810-819. doi:10.1177/0040517511433152
  25. Taieb, A. H., Mshali, S., & Sakli, F. (2018). Predicting fabric drapability property by using an artificial neural network. Journal of Engineered Fibers and Fabrics, 13(3), 87-93. doi:10.1177/155892501801300310
  26. Yang, S., Pan, Z., Amert, T., Wang, K., Yu, L., Berg, T., & Lin, M. C. (2018). Physics-inspired garment recovery from a single-view image. ACM Transactions on Graphics, 37(5):170. doi:10.1145/3026479