• Title/Summary/Keyword: artificial neural

Search Result 3,657, Processing Time 0.032 seconds

Effective Artificial Neural Network Approach for Non-Binary Incidence Matrix-Based Part-Machine Grouping (비이진 연관행렬 기반의 부품-기계 그룹핑을 위한 효과적인 인공신경망 접근법)

  • Won, You-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.4
    • /
    • pp.69-87
    • /
    • 2006
  • This paper proposes an effective approach for the part-machine grouping(PMG) based on the non-binary part-machine incidence matrix in which real manufacturing factors such as the operation sequences with multiple visits to the same machine and production volumes of parts are incorporated and each entry represents actual moves due to different operation sequences. The proposed approach adopts Fuzzy ART neural network to quickly create the Initial part families and their machine cells. A new performance measure to evaluate and compare the goodness of non-binary block diagonal solution is suggested. To enhance the poor solution due to category proliferation inherent to most artificial neural networks, a supplementary procedure reassigning parts and machines is added. To show effectiveness of the proposed approach to large-size PMG problems, a psuedo-replicated clustering procedure is designed. Experimental results with intermediate to large-size data sets show effectiveness of the proposed approach.

Cracked rotor diagnosis by means of frequency spectrum and artificial neural networks

  • Munoz-Abella, B.;Ruiz-Fuentes, A.;Rubio, P.;Montero, L.;Rubio, L.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.459-469
    • /
    • 2020
  • The presence of cracks in mechanical components is a very important problem that, if it is not detected on time, can lead to high economic costs and serious personal injuries. This work presents a methodology focused on identifying cracks in unbalanced rotors, which are some of the most frequent mechanical elements in industry. The proposed method is based on Artificial Neural Networks that give a solution to the presented inverse problem. They allow to estimate unknown crack parameters, specifically, the crack depth and the eccentricity angle, depending on the dynamic behavior of the rotor. The necessary data to train the developed Artificial Neural Network have been obtained from the frequency spectrum of the displacements of the well- known cracked Jeffcott rotor model, which takes into account the crack breathing mechanism during a shaft rotation. The proposed method is applicable to any rotating machine and it could contribute to establish adequate maintenance plans.

A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network (웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구)

  • Song Mi-Hye;Park Ho-Dong;Lee Kyoung-Joung;Park Kwang-Li
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.

Error elimination for systems with periodic disturbances using adaptive neural-network technique (주기적 외란을 수반하는 시스템의 적응 신경망 회로 기법에 의한 오차 제거)

  • Kim, Han-Joong;Park, Jong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.898-906
    • /
    • 1999
  • A control structure is introduced for the purpose of rejecting periodic (or repetitive) disturbances on a tracking system. The objective of the proposed structure is to drive the output of the system to the reference input that will result in perfect following without any changing the inner configuration of the system. The structure includes an adaptation block which learns the dynamics of the periodic disturbance and forces the interferences, caused by disturbances, on the output of the system to be reduced. Since the control structure acquires the dynamics of the disturbance by on-line adaptation, it is possible to generate control signals that reject any slowly varying time-periodic disturbance provided that its amplitude is bounded. The artificial neural network is adopted as the adaptation block. The adaptation is done at an on-line process. For this , the real-time recurrent learning (RTRL) algoritnm is applied to the training of the artificial neural network.

  • PDF

Unknown Parameter Identifier Design of Discrete-Time DC Servo Motor Using Artificial Neural Networks

  • Bae, Dong-Seog;Lee, Jang-Myung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.207-213
    • /
    • 2000
  • This paper introduces a high-performance speed control system based on artificial neural networks(ANN) to estimate unknown parameters of a DC servo motor. The goal of this research is to keep the rotor speed of the DC servo motor to follow an arbitrary selected trajectory. In detail, the aim is to obtain accurate trajectory control of the speed, specially when the motor and load parameters are unknown. By using an artificial neural network, we can acquire unknown nonlinear dynamics of the motor and the load. A trained neural network identifier combined with a reference model can be used to achieve the trajectory control. The performance of the identification and the control algorithm are evaluated through the simulation and experiment of nonlinear dynamics of the motor and the load using a typical DC servo motor model.

  • PDF

All Direction Approach Automatic Ship Berthing Controller Using ANN(Artificial Neural Networks) (인공신경망을 이용한 다방향 접근 시 선박 자동 접이안 제어기 연구)

  • Im, Nam-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.304-308
    • /
    • 2007
  • This paper deals with ANN(Artificial Neural Networks) and its application to automatic ship berthing. Due to the characteristic of ship's manoeuvre comparing with other moving objects on land, it has been known that the automatic control for ship's berthing cannot cope with various berthing situations such as various port shape and approaching directions. for these reasons. the study on automatic berthing using ANN usually have been carried out based on one port shape and predetermined approaching direction. In this paper, new algorithm with ANN controller was suggested to cope with these problems. Under newly suggested algorithm, the controller can select appropriate weights on the link of neural networks according to various situations. so the ship can maintain stable berthing operation even in different situations. Numerical simulations are carried out with this control system to find its improvement.

Nonlinear Compensation Using Artificial Neural Network in Radio-over-Fiber System

  • Najarro, Andres Caceres;Kim, Sung-Man
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In radio-over-fiber (RoF) systems, nonlinear compensation is very important to meet the error vector magnitude (EVM) requirement of the mobile network standards. In this study, a nonlinear compensation technique based on an artificial neural network (ANN) is proposed for RoF systems. This technique is based on a backpropagation neural network (BPNN) with one hidden layer and three neuron units in this study. The BPNN obtains the inverse response of the system to compensate for nonlinearities. The EVM of the signal is measured by changing the number of neurons and the hidden layers in a RoF system modeled by a measured data. Based on our simulation results, it is concluded that one hidden layer and three neuron units are adequate for the RoF system. Our results showed that the EVMs were improved from 4.027% to 2.605% by using the proposed ANN compensator.

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Prediction Partial Molar Heat Capacity at Infinite Dilution for Aqueous Solutions of Various Polar Aromatic Compounds over a Wide Range of Conditions Using Artificial Neural Networks

  • Habibi-Yangjeh, Aziz;Esmailian, Mahdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1477-1484
    • /
    • 2007
  • Artificial neural networks (ANNs), for a first time, were successfully developed for the prediction partial molar heat capacity of aqueous solutions at infinite dilution for various polar aromatic compounds over wide range of temperatures (303.55-623.20 K) and pressures (0.1-30.2 MPa). Two three-layered feed forward ANNs with back-propagation of error were generated using three (the heat capacity in T = 303.55 K and P = 0.1 MPa, temperature and pressure) and six parameters (four theoretical descriptors, temperature and pressure) as inputs and its output is partial molar heat capacity at infinite dilution. It was found that properly selected and trained neural networks could fairly represent dependence of the heat capacity on the molecular descriptors, temperature and pressure. Mean percentage deviations (MPD) for prediction set by the models are 4.755 and 4.642, respectively.

Proper Arc Welding Condition Derivation of Auto-body Steel by Artificial Neural Network (신경망 알고리즘을 이용한 차체용 강판 아크 용접 조건 도출)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Famous artificial neural network (ANN) is applied to predict proper process window of arc welding. Target weldment is variously combined lap joint fillet welding of automotive steel plates. ANN's system variable such as number of hidden layers, perceptrons and transfer function are carefully selected through case by case test. Input variables are welding condition and steel plate combination, for example, welding machine type, shield gas composition, current, speed and strength, thickness of base material. The number of each input variable referred in welding experiment is counted and provided to make it possible to presume the qualitative precision and limit of prediction. One of experimental process windows is excluded for predictability estimation and the rest are applied for neural network training. As expected from basic ANN theory, experimental condition composed of frequently referred input variables showed relatively more precise prediction while rarely referred set showed poorer result. As conclusion, application of ANN to arc welding process window derivation showed comparatively practical feasibility while it still needs more training for higher precision.