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Effective Artificial Neural Network Approach for Non-Binary
Incidence Matrix-Based Part-Machine Grouping

Youkyung Won*

B Abstract ®

This paper proposes an effective approach for the part-machine grouping(PMG) based on the non-binary part-ma-
chine incidence matrix in which real manufacturing factors such as the operation sequences with multiple visits to
the same machine and production volumes of parts are incorporated and each entry represents actual moves due
to different operation sequences. The proposed approach adopts Fuzzy ART neural network to quickly create the initial
part families and their machine cells. A new performance measure to evaluate and compare the goodness of non-binary
block diagonal solution is suggested. To enhance the poor solution due to category proliferation inherent to most artifi-
cial neural networks, a supplementary procedure reassigning parts and machines is added. To show effectiveness
of the proposed approach to large-size PMG problems, a psuedo-replicated clustering procedure is designed.
Experimental results with intermediate to large-size data sets show effectiveness of the proposed approach.
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1. Introduction

Under the present competitive market in the
rapid development of technology and short life
cycles of new products, cellular manufacturing
(CM) which is an application of group tech-
nology (GT) has attracted many academic re-
searchers and practitioners since CM has been
proved a very effective approach for improving
the productivity of small to medium-size batch-
type manufacturing system [33].

The fundamental step toward designing CM
is to create part families and associated ma-
chine cells or vice versa, which has been known
as the part-machine grouping (clustering) (PMG)
or cell formation(CF) problem in literature.
Part family is a collection of parts that have
similar operations and require a similar set of
machines for the completion of these opera-
tions. A set of machines grouped to produce
the parts in a specific part family is called the
machine cell. The fundamental objective of
PMG is to find independent machine cells with
minimum interaction between cells so that a
set of part family can be completely produced
in a cell. During the last three decades, a lot
of papers have addressed the PMG. For broad
literature review of PMG, readers are referred
to Joins et al[8] and Selim et al[31].

Given m part types and n machine types,
the basic input to analysis of PMG is an mXn
binary part-machine incidence matrix(PMIM)
A where the element a; is 1 or 0 depending
on whether or not part ¢ requires processing
on machine j. Most of the approaches for
solving PMG problem have attempted to find
part families and machine cells by trans-
forming its initial PMIM into the block diago-

nal matrix.

However, the conventional binary PMIM-
based approach to PMG is valid only when the
production volumes of the parts are equal and
the operation sequences of parts are not con-
sidered [43]. The conventional binary PMG
approaches assume that each part-type makes
identical demands on each machine type it
uses. Obviously, this does not reflect shop floor
reality. Since an intermediate operation of a
part outside its cell involves two inter-cell
moves while the first or last operation requires
just one inter-cell moves, a “1” outside the
main diagonal block can indicate more than
one inter-cell moves depending on the se-
quence of operation and the volume of that
particular part being processed [7,21]. There-
fore, the PMG ignoring the operation sequ-
ences and production volumes of parts tends
to distort the real extent of material handling
efforts within and outside the cells.

In recent years, a new research stream em-
phasizing the importance of real-world manu-
facturing factors such as the operation se-
quences and production volumes of parts has
attracted researchers [4, 6,7, 10, 20, 21, 28, 32, 33,
36,37, 39,42]. For good review of the recent
literature on the PMG considering the operation
sequences, readers are referred to Sarker and
Xu [26, 27]. However, little researches consid-
ering the combined impact of multiple visits to
the same machine and production volumes of
parts have been performed. Existing methods
for PMG reflecting the operation sequences with
multiple visits to the same machine and pro-
duction volumes of parts did not provide fun-
damental analytical tool replacing conventional
binary PMIM as a basic input. To find the part
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family and then allocate machines to cells, sep-
arate time-consuming mathematical models and
subsequent heuristic algorithms are often needed
(4, 27].

Artificial neural network(ANN) model, a re-
cent development in artificial intelligence, is a
mathematical model that can be applied to dis-
cern patterns in data. Since the problem of
transforming a matrix representing the associ-
ation of parts and machines into a block diag—
onal form is similar to pattern recognition, it
can be applied to PMG for the design of CM
system. Detailed review of the application of
ANNs to GT/CM can be found in Venugopal
[38] and Park and Suresh [22].

A notable feature of ANNS is their ability to
handle large-size PMG problem with low ex-
ecution times compared conventional hierarchi-
cal PMG methods [13, 14, 34]. The low execu-
tion times with ANNs are because they can be
operated as leader algorithms which do not
require the entire PMIM to be sorted and mani-
pulated.

Various types of ANNs have been applied to
PMG. Some examples are the backpropagation
network [11, 12, 18], self-organizing network [16,
17,24}, Adaptive Reasonance Theory (ART)
(3,5, 14, 15, 25], and Fuzzy ART [2,9,22, 23, 34,
35). Among them, Fuzzy ART provides the
best results for large-scale PMG problems
[34]. It can handle both binary-valued and an-
alogue inputs. However, the conventional ART/
Fuzzy ART algorithms tend to produce too
many clusters due to category proliferation re-
sulting from the exemplar contraction [3, 5, 34].
Furthermore, the solution quality based on ART/
Fuzzy ART algorithms highly depends on the
ordering of input vector.

The recent development of Fuzzy ART ANN
includes the incorporation of the part operation
sequence data into the network [22,35]. But
existing methods did not incorporate the oper-
ation sequences with multiple visits to the
same machine and production volumes of part
into the network simultaneously by relying on
separate binafy—valued precedence matrices
which represent the routing sequence for a
part.

In this paper, an effective methodology adopt-
ing Fuzzy ART neural network is presented to
solve the PMG problem considering the oper-
ation sequences with multiple visits to the
same machine and production volumes of
parts. The proposed methodology adopts the
non-binary PMIM develpoed by Won and Lee
411 so that it can simultaneously capture the
real manufacturing factors such as the oper-
ation sequences with multiple visits to the
same machine and production volumes of
parts. The non-binary entries normalized with
production volume of each part are fed into
network. To enhance the block diagonal sol-
ution after the initial grouping of part families
and machine cells, supplementary procedure is
added to avoid category proliferation. The pro-
posed approach will be justified on large-size
data sets generated with a psuedo-replicated
clustering procedure which is a modification
over conventional replicated clustering proce-
dure [19, 22].

The paper is organized as follows. Section 2
illustrates the failure of Fuzzy ART algorithm
applied to a small-size binary PMG problem.
Section 3 describes the representation scheme
for our Fuzzy ART network and proposes a
new measure for evaluating the goodness of
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non-binary block diagonal solution. Section 4 rithm is implemented with the vigilance

describes the algorithm. Section 5 of applies
our approach to intermediate-size data sets
available in literature and compares the sol-
ution quality. Section 6 reports the experimen-
tal results with large-size data sets. The last
section gives the summary and conclusion of

the paper.

2. Failure of Fuzzy ART
Algorithm

The objective of this section is to show that
the conventional Fuzzy ART algorithm can
produce poor bock diagonal solution due to the
category proliferation even on small-size PMG
problem.

[Figure 1] shows the initial binary PMIM
for a manufacturing system which consists of
5 parts and 5 machines.

Machines
1 2 3 4 5
1 1 1 1
2 1 1
Parts 3 1 1 1
4 1 1
5 1 1 1

[Figure 11 Initial binary PMIM

For this data set, the Fuzzy ART algorithm
in Suresh and Kaparthi [34] is applied with
the choice parameter «=05 and learning rate
#=01. The vigilance threshold indicating the
degree of maximum difference between two
input patterns (part vectors) in the same cat-
egory (cluster or part family) varies between 1
and 0. On this problem the Fuzzy ART algo-

threshold decreased by 0.01 from 0.95 to 0.1
This can lead to a variety of alternative con— -
figuration of part families and machine cells
since lowering the vigilance threshold contrib-
utes fewer clusters.

[Figure 2] shows the solution matrix that
consists of three part families, PF-1={1,4},
PF-2=1{2,3} and PF-3={5}, and their asso-
ciated three machine cells, MC-1 = {1, 3}, MC-2
={1,3} and MC-3={5}). Machine assignment
to cells corresponding to their part families
follows the maximum density rule[34].

Machines
2 4 1 3 5
1 1 1 1
4 1 1
Parts 2 1 1
3 1 1 1
5 1 1 1

[Figure 2] Solution matrix

On this data set, lowering the level of vigi-
lance threshold does not lead to smaller num-
ber of clusters and the problem of category
proliferation is not resolved if two part fami-
lies and machine cells are sought on this small
system. [Figure 3] shows the progress of
weight vector adaptation as the input part
vectors are presented to the network. The
maximum number of clusters is assumed to be
4 on this problem. After part 5 is presented to
the network, cluster 3 is the winning node.
Since the similarity with the best-matching
node 3 is 1.0, node 3 always passes the reso-
nance test for all the values of vigilance thresh-
old and part 5 remains in the third cluster.
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After presenting part 1 After presenting part 2
Farts |, 2 3 g | P 2 3 4
1 09 1 1 1 1 09 1 1 1
2 1 1 1 1 2 1 09 1 1
3 09 1 1 1 3 09 1 1 1
4 1 1 1 1 4 1 09 1 1
5 1 1 1 1 5 1 1 1 1
After presenting part 3 After presenting part 4
Parts | 2 3 g | P 2 3 4
1 09 1 1 1 1 081 1 1 1
2 1 0.81 1 1 2 1 0.81 1 1
3 09 1 1 1 3 0.81 1 1 1
4 1 0.81 1 1 4 1 0.81 1 1
5 1 0.90 1 1 5 09 09 1 1
After presenting part 5 o
Parts * indicates the best matching node selected for
1 2 3 4 each part
1 0.81 1 1 1
2 1 0.81 1 1
3 0.81 1 09 1
4 1 0.81 09 1
5 09 0.9 1 1

[Figure 3] Weight vector adaptation in Fuzzy ART

The expository example above shows that
ancillary procedure is needed to improve poor
CM solution which causes many inter—cell
moves due to the existence of exceptional parts
requiring operations in more than one parent
block. In the solution shown in [Figure 2],
parts 1, 4, and 5 are exceptional parts and
machines 1, 2, and 5 are exceptional machines
processing parts belonging to more than one
part family. Exceptional part often causes im-
proper assignment of part where it undergoes
more portions of operations on machines in
other cell rather than its parent cell corre-
sponding to its parent family. Similarly, ex-
ceptional machine can cause improper assign-
ment of machine where it has more part proc-
essing outside rather than its parent family
corresponding to its parent cell. This is known

as the chaining problem [29] in literature and
reassigning those improperly assigned parts
and machines to their. most appropriate family
and cell is an effective remedy to overcome
the chaining problem [3, 29, 40].

3. Methodology for
Non-Binary PMG

3.1 Input representation scheme

In order to present the non-binary inputs to
ANN, appropriate input presentation scheme
capturing the manufacturing characteristics like
the operation sequences with multiple visits to
the same machine and production volumes of
parts needs to be prepared. Since the most
fundamental objective of PMG is the creation
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of compact machine cells with minimum in-
ter—cell part moves and maximum within-cell
machine utilization, the use of non-binary PMIM
reflecting such manufacturing characteristics
effectively can lead to good block diagonal
solution.

In this paper, the type I production data-
based PMIM in Won and Lee [41] is employed
for input presentation since it reflects the
manufacturing characteristics such as the op-
eration sequences with multiple visits to the
same machine and production volumes of parts
simultaneously, unlike Park and Suresh's [22]
binary precedence matrix just representing the
routing sequences for parts.

Each non-binary element b, of the type I

)

production data-based PMIM B, is given by

bijzrg?bﬁjr % o
where
d; = production volume of part ¢,

E.= set of operation sequence number

along which part ¢ visits machine j,

n; = total number of operations by part i,
1ifr=1a n
fz.jr= 2 ifl<r<n
otherwise.

Each element b, in the type I production
data-based PMIM reflects the total amounts of
moves incurred by part ¢ with production vol-
ume of d; by assigning one inter—cell move to
the first or last operation and two inter—cell
moves to an intermediate operation.

However, each element of part vectors needs
to be converted into the analogue value rang-
ing between 0 and 1 before it is presented into
the Fuzzy ART neural network and hence the

input vector normalization scheme suitable to
feed Fuzzy ART neural network is needed. A
typical approach for normalizing input vectors
is to find the minimum and maximum values
for each attribute of all the input vectors and
linearly scale the data [9]. To use this scheme,
the whole information on the operation se-
quences and production volumes of all the
parts must be stored in advance before they
are presented to the network and this means
that such a scaling scheme uses the entire
PMIM at the beginning stage of applying the
neural network. However, a major advantage
from the application of ANN is that the entire
PMIM needs not to be stored in memory from
the beginning stage of algorithm since only
one row is processed at a time [13,34]. To
avoid exploiting the whole PMIM from the be-
ginning stage of algorithm and process only
one row at a time, this paper adopts a simple
scheme for normalizing input patterns. The
proposed scheme normalizes each element b
of input pattern (part vector) ¢ with its max-
imum value in pattern ¢ as follows :

i @

To show the application of the proposed in-
put normalization scheme with type I PMIM,
the routing information for part 1 shown in
[Figure 1] is reconsidered and modified so that
it represents the multiple visits to the same
machine and production volume. Let us as-
sume that the routing sequence for part 1 is
denoted as 2-4-2-4-5 and its production vol-
ume is 20 units. Then, the input vector for
part 1 before normalization is given by [0, 60,
0, 80, 20] from equation (1) and then we have



Hlo]xl ARgF suke F-F A 258 A

_,_,
FD‘I
W
2

i ro
i rg
ol
(2
oY,
ol
]

the normalized input vector [0, 0.75, 0, 1.0,
0.25] from equation (2).

3.2 Performance measure

In order to evaluate the goodness of the
bock diagonal solution to binary PMG, a lot of
popular measures have been proposed and used
to compare the effectiveness of different solution
methods [26]. But the conventional measures
of effectiveness of binary PMG can not be used
to evaluate the goodness of the non-binary
bock diagonal solution.

To evaluate the performance of PMG con-
sidering the operation sequences of part, Kiang
et al [16] proposed the cohesion measure which
requires the calculation of the similarity (dis-
similarity) coefficients between every pair of
pérts within the resulting clusters (part fami-
lies). But their measure did not reflect in-
ter—cell part moves directly.

In this paper, a simple measure of the good-
ness of non-binary bock diagonal solution, called
weighted grouping capability index (WGCD), is
proposed. WGCI which is a straightforward
extension of grouping capability index(GCI) [30]
does not require the calculation of the sim-
ilarity coefficients between every pair of parts
within part families. WGCI is defined as

the sum of exceptianal b, 5
thesum of all b5

WGCl=1— 3

The sum of exceptional b;s in a type I pro-
duction data-based PMIM represents the ac-
tual flows incurred by the operations per-
formed outside the main diagonal blocks and

hence WGCI measures the proportion of the

actual flows incurred by the operations per-
formed within the main diagonal blocks. Since
the sum of exceptional b;s includes all the
actual flows incurred by the parts which have
non-consecutive multiple operations on a ma-
chine, WGCI reflects both the operation se-
quences and production volumes of parts and
is not affected by subjective weighting factor
which is arbitrarily assigned by cell designer,
unlike conventional performance measure such
as grouping efficiency [26]. The WGCI meas-
ure reduces to the conventional GCI measure
if the binary PMIM is considered.

The WGCI measure can be used to evaluate
the goodness of two different block diagonal
solutions. If two different block diagonal sol-
utions have equal number of blocks, the sol-
ution with higher WGCI is preferred since it
has less inter-cell moves under the same num-
ber of cell configuration. If two different block
diagonal solutions have different number of
blocks and equal WGCI, the solution with
more blocks is preferred since it has more
compact cells due to higher within-cell ma-
chine utilization under the cell configuration of
equal inter—cell moves. The solution with high-
er WGCI under more blocks is absolutely pre-
ferred since it means both less inter—cell part

moves and higher within—cell machine utilization.

4. Algorithm

The algorithm for PMG based on type I
production data-based PMIM has two major
stage: clustering stage and enhancement stage.
Clustering stage uses Fuzzy ART neural net-
work to quickly cluster parts into families and

then assigns machines to cells. The proposed
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algorithm attempts to create the block diago-
nal solution accomplishing minimum inter-cell
part moves and maximum within-cell machine
utilization.

Clustering stage yields the configuration of
part families. To present the results in tradi-
tional block diagonal form, a separate routine
is needed to form machine cells by assigning
machines to different clusters. As the row
vectors are scanned, the amount of part proc-
essing of each machine by each cluster repre-
sented by the sum of b;s is calculated and
each machine is assigned to the cluster which
has the most part processing. If a machine is
not an exceptional machine, its assignment to
cell is straightforward.

However, the result with clustering stage
may not be able to bring the most similar
parts together due to the decay of exemplar
template. Category proliferation due to the ex-
emplar contraction tends to produce too many
clusters(part families). As a result, the solution
matrix may show improper block diagonal
structure including the following undesirable

features :

o Empty part families where no machines to
process the parts of a part family are as-
signed or empty machine cells where no
parts to process on the machines of a ma-

chine cell are assigned are found.

e Singleton part families which consist of a '

part are found.
¢ Improperly assigned parts and/or machines

are found.

Since empty part families(machine -cells),

singleton part families, and improper assign-

ment of parts and machines are the sources of
degrading the effectiveness of CM system,
supplementary procedure reassigning parts and
machines should be added after the clustering
stage is complete. Reassignment of parts and
machines can lead to lower inter-cell part
moves and higher within-cell machine utilization.

The reassignment procedure adopted in en-
hancement stage is a modification of reassign-
ment procedure in Chen and Cheng [3] and
Won [40] applied on the binary PMIM. The
proposed reassignment procedure applied on
the non-binary PMIM seeks to minimize in-
ter—cell part moves and maximize within—cell
machine utilization based on the following
weighted maximum density rule which is an
extension over the conventional maximum den-

sity rule :

Weighted maximum density rule

¢ For an exceptional part ¢, find its most ap-
propriate part family in which it undergoes
the most portions of operations represented
by the sum of b;s than any other part
family and reassign it to that part family. If
ties occur, select the part family in which
that part undergoes the most operations. If
ties occur again, select the smallest part
family.

¢ For an exceptional machine j, find its most
appropriate machine cell in which it proc-
esses the most portions of operations repre-
sented by the sum of b;s than any other
machine cell and reassign it to that machine
cell. If ties occur, select the machine cell in
which that machine processes the most
parts. If ties occur again, select the smallest

machine cell.
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Stopping condition of the algorithm is stated

as follows :

Stopping condition :
1) No empty part families exist,
i) no singleton part families exist, and
iil) no parts(machines) are improperly
assigned.

Note that if all the parts belonging to empty
part families are reassigned to their most ap-
propriate part families, empty machine cells are
removed automatically because all the parts are
assigned to non-empty machine cells, and the
stopping condition for non-empty machine cells
needs not to be considered.

The whole algorithm is then described as
follows :

Clustering stage

[Step 0] Use equation (2) to prepare for the input
vectors.

[Step 1] For the specfied vigilance threshold o,
choice parameter ¢ and leaming parameter 8,
apply Fuzzy ART algorithm to cluster parts into
families.

[Step 2] Assign machines to their most appropriate
cells.

Enhancement stage :

[Step 3] Apply the weighted maximum density
rule to reassign improperly assigned parts and
machines to their most appropriate part families
and machine cells.

[Step 4] If stopping condition is satisfied, stop.
Otherwise, go to [Step 3] and repeat.

5. [llustrative Examples

Many data sets based on the binary PMIM
have been provided in literature and applied to

justify the effectiveness of new PMG methods.
However, few data sets with non-binary PMIM
containing both the operation sequences with
multiple visits to the same machine and pro-
duction volumes of parts are available in liter-
ature. To show and compare the application
and effectiveness of the proposed algorithm to
the PMG problem based on non-binary PMIM,
two ill-structured intermediate- size data sets
available in open literature have been selected
and illustrated. The algorithm has been writ-
ten in C++objected-oriented language and im-
plemented on a Pentium III PC with 1 GHz.

5.1 Example 1

The proposed algorithm has been applied to
the data set in Wu [42]. On this problem, the
Fuzzy ART neural network with « =05, 8=
0.1, and the vigilance threshold of 0.95 has
been applied.

[Figure 4] shows the type I PMIM at the
end of clustering stage, which yields the six
part families and their associated machine
cells. It can be noticed from the solution ma-
trix that clustering stage generates two empty
part families that consists of parts 2 and 5,
respectively, and a singleton part family con-
sisting of part &.

The parts belonging to these part families
should be reassigned and algorithm goes to
enhancement stage. After three iterations of
enhancement stage, the solution with WGCI
equal to 94.62% as shown in [Figure 5] is ob-
tained. The configuration of part families and
machine cells shown in [Figure 5] is slightly
different from the one of Wu's solution but
two solutions give equal WGCL
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Machines
5 8 9 12 13 2 6 7 3 10 11 1 4
1] 1200 800 &00 800 400
3] 1250 500 370 2500 2500
7 600 400 200
11 | 1560 1040 1040 520 _
2 620 310 310
4 350 700 350
Parts 10 560 560 280 280 560
13 180 270 0
5 360 360 360 180 180
6 120 120 240
9 80 860 430 430 &0
12 150 300 150
8 2200 2200
[Figure 4] Type | solution matrix at the end of clustering stage
Machines
5 8 9 12 13 2 6 7 3 10 11 4 1
1| 1200 800 800 &00 400
31 1250 500 3750 2500 2500
7 600 400 200
11| 1560 1040 1040 520
5 360 360 360 180 180
4 330 700 30
Parts 10 560 560 280 560 280
13 180 270 0
2 620 310 310
6 120 120 240
9 860 860 430 860 430
12 150 300 150
8 2200 2200
[Figure 5] Type | solution matrix at the end of enhancement stage
5.2 Example 2 lem the Fuzzy ART neural network with o =

The second data set has been adopted from
Nair and Narednran [21]. Although it does not
include the operation sequences with multiple
visits to the same machine and different pro-
duction volumes for parts, it has been selected
to compare the solution qualities based on the
reference algorithm and the proposed method.
In this data set, production volumes for each

part is assumed to be one unit. On this prob-

05, =01 has also been applied. To ensure
proper comparison of the solutions under equal
number of clusters, the Fuzzy ART neural
network has been implemented for various
vigilance thresholds decreasing by 0.01 from
the starting value of 0.95.

[Figure 6] shows the solution matrix im-
plemented at the vigilance threshold of (.93
and [Figure 7] shows the solution matrix pro-
vided in Nair and Narendran. Their method
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Parts

& o & o

BB 88838 o2

Machines
1 2 1223 4 7 1618 8 9 3 11 17 24 2 20 5 19 10 6 15 21 22 14 13
2 2 1 1
2 2 11
1 1
2 1 1
2 112 1
2 1 1
2 11 1
1
1
11 2
2 2 21 1
1 2 21
1 2 2 1
1 1
2 2 2 1 1
1 1
2 1 1
2 1 1
2 1 1
2 1 1
1 2 2 2 1
12 1
2 1 1
1 2|2 1
2 1 1
1 1
1 2 211
2 1 2 211
1 2 1
1 2 1
1 1 2
1 1
1 1
1 1 2
1 2 1
21 1 2
2 1 1
1 1 2
2 1 1
2 1 1 2

[Figure 6] Type | solution matrix at the end of enhancement stage
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has yielded the solution with WGCI equal to
76.58%, whereas the proposed algorithm yields
better solution with WGCI equal to 78.19.

The solution by the proposed algorithm is
compared with the one in Park and Suresh [22].
Since they only showed the configuration of
part families and did not provide the config-
uration of machine cells, however, the unified
comparison using WGCI is impossible among
the solutions. <Table 1> shows the config-
uration of part families in Park and Suresh.
From the table, it can be notice that there are
minor differences in the solutions. But Park
and Suresh’s method which also includes sup-
plementary merging procedure for countering
the category proliferation problem has pro-
duced singleton part family. whereas the pro-
posed method does not yield any singleton
part family and this results in the block diag-
onal solution with higher WGCL

{Table 1> Solution by Park and Suresh

Part family Parts
1 18,32
2 1,4,5,6,7,16,17, 20, 26, 30, 34, 37, 39
3 8,15,23,24,31
4 3,9,13,14,33
5 1
6 25,27,29,35,40
7 2,12,36
8 10,19,21,22,28 38

6. Experiments with
Large-Size Data

The effectiveness of the proposed algorithm
needs to be tested on ill-structured large-size
PMG problems. In order to show the robust-

ness and recoverability of PMG algorithms to
randomly generated large-size data sets, re-
plicated clustering has often been used [19, 22].
In replicated clustering. a known solution is
generated first and randomly reordered, and
these scrambled data are presented to an
algorithm. The clusters resulting from the al-
gorithm are then compared and evaluated with
the known starting solution [22].

However, few authors have proposed sys-
tematic replicated clustering procedure for the
generation of data sets including both the op-
eration sequences with multiple visits to the
same machine and the production volumes of
parts. In this paper, a psuedo-replicated clus-
tering procedure which is applicable as an al-
ternative for conventional replicated clustering
is proposed to generate large-size data sets
including both the operation sequences with
multiple visits to the same machine and the
production volumes of parts. The psuedo-re-
plicated clustering procedure proceeds as fol-

lows :

Psuedo-replicated clustering -

i) An appropriately intermediate-size problem
is solved with PMG algorithm and identify
the number of clusters and the value of
WGCL

i) Assume that the incumbent solution to that
problem is the best one and apply Adil et
al’s data expansion scheme [1] to replicate
row and columns of the original problem.
Scramble the order of input presentation at
random.

iii) Apply PMG algorithm to expanded problem.

Adil et al’s data expansion scheme that has
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been applied to binary PMIM can be applied to
non-binary PMIM in a similar way so as to
replicate row and columns of the original prob-
lem. Unlike the conventional replicated cluster-
ing to generate large-size data sets at one
time, the psuedo-replicated clustering proce-
dure generates large-size data sets by repli-
cating row and columns many times. Furthe-
more, the proposed psuedo-replicated cluster-
ing can start with near-best solution to the
original problem which is accepted by cell

designer.

To apply psuedo-replicated clustering proce-
dure, the original problem needs to be appro-
priately ill-structured and provide the manu-
facturing data of the operation sequences with
multiple visits to the same machine and pro-
duction volumes of parts. In our experiment,
the data set shown in example 1 of the pre-
vious section has been selected to apply psue-
do-replicated clustering since it is a good ex-
ample of ill-structured problem providing the

(Table 2> Experimental results with expanded data sets

Expansion level 2 . 5 . 10 .
(26 x 26) (65 x 65) (130 x 130)
Problem . No. of No. of No. of

No. ’ clusters WGl clusters WGCI clusters WGCI

1 (1147 6 93.05 17 9233 33 93.02

2 0% 6 929 16 93.36 33 93.34

3 094 6 93.96 16 93.09 A R71

4 0% 6 9305 17 93.09 3 92.78

5 04 6 9390 15 9395 33 92.75

6 0% 6 - 9462 17 93.09 33 93.16

7 0% 6 94.62 16 9295 35 92.09
.8 095 6 .62 15 93.86 34 92.33
9 094 6 9462 17 9233 34 9205

10 0.93 6 9360 15 93.86 32 93.07
1 0. 6 94.26 15 929% 36 91.81
12 093 6 RN 16 93.09 3b 92.33
13 095 6 9269 15 93.08 32 93.40
14 0% 6 9294 15 93.86 30 93.33
15 095 6 9462 16 9R29% 3 93.02
16 090 6 A2 15 93.36 31 93.86
17 095 6 962 16 93.09 34 92.69
18 0% 6 9271 16 9233 32 929
19 0.4 6 9390 16 93.86 34 92.39
20 0% 6 9462 15 93.09 33 9264
21 0.4 6 92.35 18 92.33 34 92.71
2 095 6 9462 15 93.08 32 9240
PA] 094 6 62 15 9462 32 92.78
24 0% 6 9462 16 93.18 34 92.64
2 0.9% 6 9462 17 93.09 3 93.09
average 9339 93.25 9.77

Note) * denotes the resulting problem size(no. of parts x no. of machines).

* denotes the vigilance threshold.
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operation sequences with multiple visits to the
same machine and production volumes of parts.

The proposed psuedo-replicated clustering
procedure has been applied to the data set in
Wu [42] with various expansion levels. In our
experiments, the expansion levels equal to 2, 5,
and 10 have been applied. The target value of
WGCI revealing the recoverability of the pro-
posed algorithm to expanded problems is set
at 9462% under the configuration of clusters not
less than 6, 15, and 30, respectively, for each
expansion level, For each expansion level, 25
problems have been generated and randomly
scrambled. The data sets are available on request.

<Table 2> shows the experimental results.
The second leftmost whole columns show the
values of vigilance threshold, number of clus-

ters, and WGCI found when the original prob-
lem is replicated with the expansion level of 2.
To compare the solution quality under equal
number of clusters, the algorithm has been im-
plemented with the values of vigilance thresh-
old decreasing by 0.01 from the starting value
of 0.95 until the six-cluster solution has been
found. The experimental result with psuedo-
replicated clustering shows minor gap within
1% from the target WGCI value of 94.62% on
the average. In 11 problem instances of 25
problem, the proposed algorithm recovers the
original problem. But their orders of input pre-
sentation are different. <Table 3> shows dif-
ferent input orders for those 11 problems and
this indicates that the algorithm is not sensi-
tive to the input order.

{Table 3) Different orderings of part input vector presentation

Problem No. | 7 8 9 || 7| 2| 2|23 2>
order

1 B | 16| 3] 8| 1] 1] 28] 10| 18] 2] 14
2 71 > 1 s| | 7| 19| 12| 12| B]|
3 51 19| 5| ofl 13| 8| 5| B3| 20| 14| 17
4 nul 0| 6| 1| 12| v 2| 9| »| 5| =
5 0| 1 s 18| 10| 3! 6| 6| 19| 2| 10
6 1| 2 17 1B 9| 5| ul| 1] 3 1] 18
7 4l 3] 2| ol nl| » 1l sl 7| B 2
8 9| 5| 1| 0| 2| 0| w| n| 2| | =«
9 w| B3| B B ®| 2| 4 1| B3] 0| s
10 % | 3| 4 1| 1| 13| 3| > 1| 18| »
11 6| 18| 2| 26| 18] 4| 12| 5| 18| 12| 1
12 % 1 s a| a| 4| 7] 19| w0l 3 1
13 ol uwl 30 7 ol 8| 2| 21 9ol 13
14 B 2| 8| 16| 5| 8| 2| al | 7| 5
15 w| 14| 2| 2| 21 6| 9o 8| 1| 17| 2
16 s| 4| 1 7| u| n| x| 3| 8| 4| w
17 vl 6| 15| B 15 1| B B8] 38| 13| 19
18 8 2| 19| 4| 20| 2] a| 5] 6| ul| s
19 3| | 7| 19| a4l u) w8 w| w| | 7
20 2| ol of | 1| B| w| n| #| 3| 1
2 5 5| 16| 6| 6| 2al x| 7| 9| x| 1
% al | 12| 2| 5| 2| w| 2| 5| 1©] 9
23 6| 8| 18| 2| 8! 2| 2| 2| 1| 15| 3
2 |l 10| 0] 2| v 5| B 4| u| al| =»
% vl oal al w| 3| 7| 0| | 5| n 4
% 12 7| 2| | | 8| ul|l 4| 2| w0| s
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<Table 2> also reports the experimental re-
sults with the large-size problems replicated
with the expansion levels of 5 and 10. To
these large-size problems, the Fuzzy ART
network with a vigilance threshold of 0.95 has
been implemented to produce the solutions
with the clusters not less than 15 and 30, re—
spectively, for each exp'ansion level. The table
shows that the proposed algorithm has pro-
duced the solutions that have gap within 2%
on the average from the target WGCI under
the clusters more than the reference numbers
on the data sets replicated with the expansion
level of 10.

7. Concluding Remarks

In this paper, effective approach adopting
Fuzzy ART neural network has been proposed
to solve the non-binary PMG problem which
considers real manufacturing factors such as
the operation sequences with multiple visits
the same machine and production volumes of
the parts.

The proposed algorithm seeks to overcome
the category proliferation problem that is in-
herent to most ANN algorithms by implemen-
ting supplementary procedure which reassigns
improperly assigned parts and machines and
finds good-quality solutions. New performance
measure for evaluating and comparing the
goodness of different non-binary bock diago-
nal solutions has been proposed. On ill-struc-
tured intermediate size problems, the proposed
algorithm produces good—-quality bock diagonal
solutions.

To show the robustness and recoverability
of the proposed algorithm on large-size data

sets, psuedo-replicated clustering procedure
that is a variant of the conventional replicated
clustering has been suggested. The experimen-
tal results with psuedo-replicated clustering
shows the robustness and recoverability of the
proposed algorithm on large-size data sets with-
in minor gap from the target value of the pro-
posed new performance measure.

This paper does not consider the manu-
facturing factors such as minimization of the
cell load variation based on the machine ca-
pacity, multiple copies of identical machines,
and alternative process plans. Development of
effective  ANN models including such more
comprehensive manufacturing factors is the

future research to be done.
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