• Title/Summary/Keyword: artificial intelligence-based models

Search Result 553, Processing Time 0.026 seconds

A Study of Traffic Signal Timing Optimization Based on PSO-BFO Algorithm (PSO-BFO 알고리즘을 통한 교통 신호 최적화 연구)

  • Hong Ki An;Gimok Bae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.182-195
    • /
    • 2023
  • Recently, research on traffic signal control using artificial intelligence algorithms has been receiving attention, and many traffic signal control models are being studied. However, most studies either focused on independent intersections or are theoretical studies that calculate signal cycle length according to changes in traffic volume. Therefore, this study was conducted on a signalized intersection - roundabout in Gajwa-ro. The Particle Swarm Optimization - Bacterial Foraging Optimization (PSO-BFO) algorithm was proposed, which is developed from the GA and PSO algorithms for minimizing congestion at two intersections. As a result, optimum cycle length was determined to be 158 seconds. The Verkehr In Stadten - SIMulationsmodell (VISSIM) results showed that there was 3.4% increased capacity, 8.2% reduced delay and 8.3% reduced number of stops at the Gajwa-ro signalized intersection. Additionally, at the roundabout, a 9.2% increase in capacity, a 7.1% reduction in delay, and a 27.2% decrease in the number of stops was observed.

A Study on Correction and Prevention System of Real-time Forward Head Posture (실시간 거북목 증후군 자세 교정 및 예방 시스템 연구)

  • Woo-Seok Choi;Ji-Mi Choi;Hyun-Min Cho;Jeong-Min Park;Kwang-in Kwak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.147-156
    • /
    • 2024
  • This paper introduces the design of a turtle neck posture correction and prevention system for users of digital devices for a long time. The number of forward head posture patients in Korea increased by 13% from 2018 to 2021, and has not yet improved according to the latest statistics at the present time. Because of the nature of the disease, prevention is more important than treatment. Therefore, in this paper, we designed a system based on built-camera in most laptops to increase the accessiblility of the system, and utilize the features such as Pose Estimation, Face Landmarks Detection, Iris Tracking, and Depth Estimation of Google Mediapipe to prevent the need to produce artificial intelligence models and allow users to easily prevent forward head posture.

Empirical Research on the Interaction between Visual Art Creation and Artificial Intelligence Collaboration (시각예술 창작과 인공지능 협업의 상호작용에 관한 실증연구)

  • Hyeonjin Kim;Yeongjo Kim;Donghyeon Yun;Hanjin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.517-524
    • /
    • 2024
  • Generative AI, exemplified by models like ChatGPT, has revolutionized human-machine interactions in the 21st century. As these advancements permeate various sectors, their intersection with the arts is both promising and challenging. Despite the arts' historical resistance to AI replacement, recent developments have sparked active research in AI's role in artistry. This study delves into the potential of AI in visual arts education, highlighting the necessity of swift adaptation amidst the Fourth Industrial Revolution. This research, conducted at a 4-year global higher education institution located in Gyeongbuk, involved 70 participants who took part in a creative convergence module course project. The study aimed to examine the influence of AI collaboration in visual arts, analyzing distinctions across majors, grades, and genders. The results indicate that creative activities with AI positively influence students' creativity and digital media literacy. Based on these findings, there is a need to further develop effective educational strategies and directions that incorporate AI.

A Study on the Operational Planning Assist System for Ground Forces (지상군 작전계획 수립 보조 시스템 설계 연구)

  • Ikhyun Kim;Sunju Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2023
  • The military leader makes an operation plan to accomplish combat missions. The current doctrine for an operation planning requires the use of simple and clear procedures and methods that can be carried out with human effort under adverse conditions in the field. The work in the process of an operation planning can be said to be a series of decision-making, and the criteria for decision-making generally apply mission variables. However, detailed standards are not fixed as doctrine, but are creatively established and applied. However, for AI-based decision-making, it is necessary to formalize the criteria and the format used. This paper first aims to standardize various criteria and forms to present a method that can be used in a semi-automated assist system, and to seek a plan to artificialize it. To this end, mathematical models and decision-making methods established in the field of operations research were applied to improve efficiency.

  • PDF

Predicting Traffic Accident Risk based on Driver Abnormal Behavior and Gaze

  • Ji-Woong Yang;Hyeon-Jin Jung;Han-Jin Lee;Tae-Wook Kim;Ellen J. Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose a new approach by analyzing driver behavior and gaze changes within the vehicle in real-time to assess and predict the risk of traffic accidents. Utilizing data analysis and machine learning algorithms, this research precisely measures drivers' abnormal behaviors and gaze movement patterns in real-time, and aggregates these into an overall Risk Score to evaluate the potential for traffic accidents. This research underscores the significance of internal factors, previously unexplored, providing a novel perspective in the field of traffic safety research. Such an innovative approach suggests the feasibility of developing real-time predictive models for traffic accident prevention and safety enhancement, expected to offer critical foundational data for future traffic accident prevention strategies and policy formulation.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.

Korean Sentence Generation Using Phoneme-Level LSTM Language Model (한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성)

  • Ahn, SungMahn;Chung, Yeojin;Lee, Jaejoon;Yang, Jiheon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.71-88
    • /
    • 2017
  • Language models were originally developed for speech recognition and language processing. Using a set of example sentences, a language model predicts the next word or character based on sequential input data. N-gram models have been widely used but this model cannot model the correlation between the input units efficiently since it is a probabilistic model which are based on the frequency of each unit in the training set. Recently, as the deep learning algorithm has been developed, a recurrent neural network (RNN) model and a long short-term memory (LSTM) model have been widely used for the neural language model (Ahn, 2016; Kim et al., 2016; Lee et al., 2016). These models can reflect dependency between the objects that are entered sequentially into the model (Gers and Schmidhuber, 2001; Mikolov et al., 2010; Sundermeyer et al., 2012). In order to learning the neural language model, texts need to be decomposed into words or morphemes. Since, however, a training set of sentences includes a huge number of words or morphemes in general, the size of dictionary is very large and so it increases model complexity. In addition, word-level or morpheme-level models are able to generate vocabularies only which are contained in the training set. Furthermore, with highly morphological languages such as Turkish, Hungarian, Russian, Finnish or Korean, morpheme analyzers have more chance to cause errors in decomposition process (Lankinen et al., 2016). Therefore, this paper proposes a phoneme-level language model for Korean language based on LSTM models. A phoneme such as a vowel or a consonant is the smallest unit that comprises Korean texts. We construct the language model using three or four LSTM layers. Each model was trained using Stochastic Gradient Algorithm and more advanced optimization algorithms such as Adagrad, RMSprop, Adadelta, Adam, Adamax, and Nadam. Simulation study was done with Old Testament texts using a deep learning package Keras based the Theano. After pre-processing the texts, the dataset included 74 of unique characters including vowels, consonants, and punctuation marks. Then we constructed an input vector with 20 consecutive characters and an output with a following 21st character. Finally, total 1,023,411 sets of input-output vectors were included in the dataset and we divided them into training, validation, testsets with proportion 70:15:15. All the simulation were conducted on a system equipped with an Intel Xeon CPU (16 cores) and a NVIDIA GeForce GTX 1080 GPU. We compared the loss function evaluated for the validation set, the perplexity evaluated for the test set, and the time to be taken for training each model. As a result, all the optimization algorithms but the stochastic gradient algorithm showed similar validation loss and perplexity, which are clearly superior to those of the stochastic gradient algorithm. The stochastic gradient algorithm took the longest time to be trained for both 3- and 4-LSTM models. On average, the 4-LSTM layer model took 69% longer training time than the 3-LSTM layer model. However, the validation loss and perplexity were not improved significantly or became even worse for specific conditions. On the other hand, when comparing the automatically generated sentences, the 4-LSTM layer model tended to generate the sentences which are closer to the natural language than the 3-LSTM model. Although there were slight differences in the completeness of the generated sentences between the models, the sentence generation performance was quite satisfactory in any simulation conditions: they generated only legitimate Korean letters and the use of postposition and the conjugation of verbs were almost perfect in the sense of grammar. The results of this study are expected to be widely used for the processing of Korean language in the field of language processing and speech recognition, which are the basis of artificial intelligence systems.

Optimizing Clustering and Predictive Modelling for 3-D Road Network Analysis Using Explainable AI

  • Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.30-40
    • /
    • 2024
  • Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.

Development of Vehicle Queue Length Estimation Model Using Deep Learning (딥러닝을 활용한 차량대기길이 추정모형 개발)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Kim, Soo-Hee;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.39-57
    • /
    • 2018
  • The purpose of this study was to construct an artificial intelligence model that learns and estimates the relationship between vehicle queue length and link travel time in urban areas. The vehicle queue length estimation model is modeled by three models. First of all, classify whether vehicle queue is a link overflow and estimate the vehicle queue length in the link overflow and non-overflow situations. Deep learning model is implemented as Tensorflow. All models are based DNN structure, and network structure which shows minimum error after learning and testing is selected by diversifying hidden layer and node number. The accuracy of the vehicle queue link overflow classification model was 98%, and the error of the vehicle queue estimation model in case of non-overflow and overflow situation was less than 15% and less than 5%, respectively. The average error per link was about 12%. Compared with the detecting data-based method, the error was reduced by about 39%.

An Experimental Comparison of CNN-based Deep Learning Algorithms for Recognition of Beauty-related Skin Disease

  • Bae, Chang-Hui;Cho, Won-Young;Kim, Hyeong-Jun;Ha, Ok-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.25-34
    • /
    • 2020
  • In this paper, we empirically compare the effectiveness of training models to recognize beauty-related skin disease using supervised deep learning algorithms. Recently, deep learning algorithms are being actively applied for various fields such as industry, education, and medical. For instance, in the medical field, the ability to diagnose cutaneous cancer using deep learning based artificial intelligence has improved to the experts level. However, there are still insufficient cases applied to disease related to skin beauty. This study experimentally compares the effectiveness of identifying beauty-related skin disease by applying deep learning algorithms, considering CNN, ResNet, and SE-ResNet. The experimental results using these training models show that the accuracy of CNN is 71.5% on average, ResNet is 90.6% on average, and SE-ResNet is 95.3% on average. In particular, the SE-ResNet-50 model, which is a SE-ResNet algorithm with 50 hierarchical structures, showed the most effective result for identifying beauty-related skin diseases with an average accuracy of 96.2%. The purpose of this paper is to study effective training and methods of deep learning algorithms in consideration of the identification for beauty-related skin disease. Thus, it will be able to contribute to the development of services used to treat and easy the skin disease.