• Title/Summary/Keyword: artificial intelligence quality

Search Result 483, Processing Time 0.022 seconds

Development of Facility Layout Design Algorithm Based on Artificial Intelligence Concept (인공지능 개념을 이용한 공장 설비배치 알고리즘 개발)

  • Kim, Hwan-Seong;Lee, Sang-Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.1
    • /
    • pp.151-162
    • /
    • 1991
  • The purpose of this study is to propose a facility layout design algorithm based on artificial intelligence concept, and then to develop a computer program which is more practical than any other conventional facility layout design systems. The algorithm is composed of five step layout procedures; knowledge and data input, knowledge interpretation, priority determination, inference of layout design, and evaluation, In the step of priority determination, the algorithm is divided into single row and multi row layout problem. In the step of inference of layout design, alternatives are generated by constraints-directed reasoning and depth first search method based on artificial intelligence concept. Alternatives are evaluated by the moving cost and relationship value by interactive man-machine interface in the step of evaluation. As a case study, analytical considerations over conventional programs such as CRAFT and CORELAP was investigated and compared with algorithm propsed in this study. The proposed algorithm in this study will give useful practical tool for layout planner. The computer progran was written in C language for IBM PC-AT.

  • PDF

Criteria for implementing artificial intelligence systems in reproductive medicine

  • Enric Guell
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • This review article discusses the integration of artificial intelligence (AI) in assisted reproductive technology and provides key concepts to consider when introducing AI systems into reproductive medicine practices. The article highlights the various applications of AI in reproductive medicine and discusses whether to use commercial or in-house AI systems. This review also provides criteria for implementing new AI systems in the laboratory and discusses the factors that should be considered when introducing AI in the laboratory, including the user interface, scalability, training, support, follow-up, cost, ethics, and data quality. The article emphasises the importance of ethical considerations, data quality, and continuous algorithm updates to ensure the accuracy and safety of AI systems.

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

A Study on Library Service using Artificial Intelligence: Focused on North American University Libraries (인공지능(AI)을 이용한 도서관서비스 연구 - 북미 대학도서관을 중심으로 -)

  • Kim, Ji-Hyun
    • Journal of Korean Library and Information Science Society
    • /
    • v.51 no.4
    • /
    • pp.231-247
    • /
    • 2020
  • As artificial intelligence (AI) has emerged as a promising future technology among the fourth industrial revolution, we are trying to apply artificial intelligence technology across all area of society, including libraries. This study investigated the effects, issues, and implications of artificial intelligence on university library services. As a research method, in-depth interviews were conducted with IT experts of university libraries in North America, and conclusions and discussion were drawn from interview results and related documents. Research results revealed that university libraries in North America were trying to build an infrastructure that facilitates information access and retrieval based on artificial intelligence systems and to provide new services in collaboration with AI research institutes in universities. This study raised issues regarding the expansion of the role of libraries and librarians, privacy, and data quality. It was also discussed that the need for re-education of university librarians to become software engineers who play a role in disseminating knowledge. In addition, this study suggested the investment for the establishment of the information system and an artificial intelligence research center in the library. The study discussed limitations of research due to changes in the research environment and suggestions for future research.

Guidelines for Data Construction when Estimating Traffic Volume based on Artificial Intelligence using Drone Images (드론영상과 인공지능 기반 교통량 추정을 위한 데이터 구축 가이드라인 도출 연구)

  • Han, Dongkwon;Kim, Doopyo;Kim, Sungbo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.147-157
    • /
    • 2022
  • Recently, many studies have been conducted to analyze traffic or object recognition that classifies vehicles through artificial intelligence-based prediction models using CCTV (Closed Circuit TeleVision)or drone images. In order to develop an object recognition deep learning model for accurate traffic estimation, systematic data construction is required, and related standardized guidelines are insufficient. In this study, previous studies were analyzed to derive guidelines for establishing artificial intelligence-based training data for traffic estimation using drone images, and business reports or training data for artificial intelligence and quality management guidelines were referenced. The guidelines for data construction are divided into data acquisition, preprocessing, and validation, and guidelines for notice and evaluation index for each item are presented. The guidelines for data construction aims to provide assistance in the development of a robust and generalized artificial intelligence model in analyzing the estimation of road traffic based on drone image artificial intelligence.

A Study on the Quantitative Evaluation Method of Quality Control using Ultrasound Phantom in Ultrasound Imaging System based on Artificial Intelligence (인공지능을 활용한 초음파영상진단장치에서 초음파 팬텀 영상을 이용한 정도관리의 정량적 평가방법 연구)

  • Yeon Jin, Im;Ho Seong, Hwang;Dong Hyun, Kim;Ho Chul, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.390-398
    • /
    • 2022
  • Ultrasound examination using ultrasound equipment is an ultrasound device that images human organs using sound waves and is used in various areas such as diagnosis, follow-up, and treatment of diseases. However, if the quality of ultrasound equipment is not guaranteed, the possibility of misdiagnosis increases, and the diagnosis rate decreases. Accordingly, The Korean Society of Radiology and Korea society of Ultrasound in Medicine presented guidelines for quality management of ultrasound equipment using ATS-539 phantom. The DenseNet201 classification algorithm shows 99.25% accuracy and 5.17% loss in the Dead Zone, 97.52% loss in Axial/Lateral Resolution, 96.98% accuracy and 20.64% loss in Sensitivity, 93.44% accuracy and 22.07% loss in the Gray scale and Dynamic Range. As a result, it is the best and is judged to be an algorithm that can be used for quantitative evaluation. Through this study, it can be seen that if quantitative evaluation using artificial intelligence is conducted in the qualitative evaluation item of ultrasonic equipment, the reliability of ultrasonic equipment can be increased with high accuracy.

A Study on the Audio Mastering Results of Artificial Intelligence and Human Experts (인공지능과 인간 전문가의 오디오 마스터링 비교 연구)

  • Heo, Dong-Hyuk;Park, Jae-Rock
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.41-50
    • /
    • 2021
  • While artificial intelligence is rapidly replacing human jobs, the art field where human creativity is important is considered an exception. There are currently several AI mastering services in the field of mastering music, a profession at the border between art and technology. In general, the quality of AI mastering is considered to be inferior to the work of a human professional mastering engineer. In this paper, acoustic analysis, listening experiments, and expert interviews were conducted to compare AI and human experts. In the acoustic analysis, In the analysis of audio, there was no significant difference between the results of professional mastering engineers and the results of artificial intelligence. In the listening experiment, the non-musicians could not distinguish between the sound quality of the professional mastering engineer's work and the artificial intelligence work. The group of musicians showed a preference for a specific sound source, but the preference for a specific mastering did not appear significantly. In an expert interview, In expert interviews, respondents answered that there was no significant difference in quality between the two mastering services, and the biggest difference was the communication method between the mastering service provider and the user. In addition, as data increases, it is expected that artificial intelligence mastering will achieve rapid quality improvement and further improvement in communication.

Prediction of Air Exchange Performance of an Air Purifier by Installation Location using Artificial Neural Network (인공신경망 기반 공기정화기 설치위치에 따른 공기교환성능 예측)

  • Kim, Na Kyong;Kang, Dong Hee;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.21-27
    • /
    • 2022
  • Air purifiers can be placed where the air cleaning is required, making it easy to manage indoor air quality. The position of the air purifier affects the indoor airflow pattern, resulting in different air cleaning efficiency. Many efforts and strategies have been examined through numerical simulations and experiments to find the proper location of the air purifier, but problems still remain due to the various geometrical indoor spaces and arrangements. Herein, we develop an artificial intelligence model to predict the performance of an air purifier depending on the installation location. To obtain the training data, numerical simulations were performed on the different locations of the air purifiers and airflow patterns. The trained artificial intelligence model predicted the air exchange performance depending on the installation location of the air purifier with a prediction accuracy of 92%.

Accuracy Measurement of Image Processing-Based Artificial Intelligence Models

  • Jong-Hyun Lee;Sang-Hyun Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.212-220
    • /
    • 2024
  • When a typhoon or natural disaster occurs, a significant number of orchard fruits fall. This has a great impact on the income of farmers. In this paper, we introduce an AI-based method to enhance low-quality raw images. Specifically, we focus on apple images, which are being used as AI training data. In this paper, we utilize both a basic program and an artificial intelligence model to conduct a general image process that determines the number of apples in an apple tree image. Our objective is to evaluate high and low performance based on the close proximity of the result to the actual number. The artificial intelligence models utilized in this study include the Convolutional Neural Network (CNN), VGG16, and RandomForest models, as well as a model utilizing traditional image processing techniques. The study found that 49 red apple fruits out of a total of 87 were identified in the apple tree image, resulting in a 62% hit rate after the general image process. The VGG16 model identified 61, corresponding to 88%, while the RandomForest model identified 32, corresponding to 83%. The CNN model identified 54, resulting in a 95% confirmation rate. Therefore, we aim to select an artificial intelligence model with outstanding performance and use a real-time object separation method employing artificial function and image processing techniques to identify orchard fruits. This application can notably enhance the income and convenience of orchard farmers.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.