• 제목/요약/키워드: artificial intelligence models

검색결과 836건 처리시간 0.025초

Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study

  • Sung-Hoon Han;Jisup Lim;Jun-Sik Kim;Jin-Hyoung Cho;Mihee Hong;Minji Kim;Su-Jung Kim;Yoon-Ji Kim;Young Ho Kim;Sung-Hoon Lim;Sang Jin Sung;Kyung-Hwa Kang;Seung-Hak Baek;Sung-Kwon Choi;Namkug Kim
    • 대한치과교정학회지
    • /
    • 제54권1호
    • /
    • pp.48-58
    • /
    • 2024
  • Objective: To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). Methods: A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. Results: The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. Conclusions: The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.

Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석 (Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit)

  • 나혜인;이병희
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT는 생성형 인공지능(Generative AI) 기술을 활용한 대표적인 챗봇으로서 과학기술 영역뿐만 아니라 사회, 경제, 산업, 문화 등 당양한 분야에서 유용하게 활용되고 있다. 본 연구는 글로벌 소셜미디어 레딧(Reddit)을 활용해 ChatGPT에 대한 사용자의 감정과 요구에 대한 탐색적인 분석을 수행한다. 이를 위해, 2022년 12월부터 2023년 8월까지의 댓글 10,796건을 수집하여 키워드 분석, 감성 분석, 니드마이닝(Needmining) 기반 토픽모델링을 실시하였다. 분석 결과, ChatGPT에 대한 댓글에서 출현 빈도가 가장 높은 단어는 "time"으로 답변의 신속성, 시간 효율성, 생산성 향상을 강조한 것으로 나타났다. 사용자들은 ChatGPT에 대해 신뢰와 기대의 감정과 동시에 사회적 영향에 대한 두려움과 분노의 감정을 표현하였다. 또한, 토픽모델링 분석을 통해 잠재적 니즈(Needs)를 포함한 14개의 주제를 도출하였고, 사용자들이 특히 ChatGPT에 대한 교육적 활용과 사회적 영향에 많은 관심을 보였다. 또한, ChatGPT와 관련된 언어모델, 직업, 정보, 의료, 서비스, 게임, 규제, 에너지, 윤리적 문제 등 다양한 주제들이 논의된 것을 알 수 있었다. 분석 결과를 바탕으로 사용자들의 요구를 반영하여 향후 실행계획의 방향을 제시하였다. 본 연구는 향후 ChatGPT를 이용하여 제품과 서비스를 개선하고, 새로운 서비스 플랫폼 기획 단계에서 유용한 정보를 제공할 것으로 기대된다.

Mechanical behavior of 316L austenitic stainless steel bolts after fire

  • Zhengyi Kong;Bo Yang;Cuiqiang Shi;Xinjie Huang;George Vasdravellis;Quang-Viet Vu;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.281-298
    • /
    • 2024
  • Stainless steel bolts (SSB) are increasingly utilized in bolted steel connections due to their good mechanical performance and excellent corrosion resistance. Fire accidents, which commonly occur in engineering scenarios, pose a significant threat to the safety of steel frames. The post-fire behavior of SSB has a significant influence on the structural integrity of steel frames, and neglecting the effect of temperature can lead to serious accidents in engineering. Therefore, it is important to evaluate the performance of SSB at elevated temperatures and their residual strength after a fire incident. To investigate the mechanical behavior of SSB after fire, 114 bolts with grades A4-70 and A4-80, manufactured from 316L austenitic stainless steel, were subjected to elevated temperatures ranging from 20℃ to 1200℃. Two different cooling methods commonly employed in engineering, namely cooling at ambient temperatures (air cooling) and cooling in water (water cooling), were used to cool the bolts. Tensile tests were performed to examine the influence of elevated temperatures and cooling methods on the mechanical behavior of SSB. The results indicate that the temperature does not significantly affect the Young's modulus and the ultimate strength of SSB. Up to 500℃, the yield strength increases with temperature, but this trend reverses when the temperature exceeds 500℃. In contrast, the ultimate strain shows the opposite trend. The strain hardening exponent is not significantly influenced by the temperature until it reaches 500℃. The cooling methods employed have an insignificant impact on the performance of SSB. When compared to high-strength bolts, 316L austenitic SSB demonstrate superior fire resistance. Design models for the post-fire mechanical behavior of 316L austenitic SSB, encompassing parameters such as the elasticity modulus, yield strength, ultimate strength, ultimate strain, and strain hardening exponent, are proposed, and a more precise stress-strain model is recommended to predict the mechanical behavior of 316L austenitic SSB after a fire incident.

Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels

  • Pyeong Hwa Kim;Hee Mang Yoon;Jeong Rye Kim;Jae-Yeon Hwang;Jin-Ho Choi;Jisun Hwang;Jaewon Lee;Jinkyeong Sung;Kyu-Hwan Jung;Byeonguk Bae;Ah Young Jung;Young Ah Cho;Woo Hyun Shim;Boram Bak;Jin Seong Lee
    • Korean Journal of Radiology
    • /
    • 제24권11호
    • /
    • pp.1151-1163
    • /
    • 2023
  • Objective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model. Materials and Methods: A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7-12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; median age [IQR], 10 [4-15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5-14] years; male: female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model). Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2. Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.

셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용 (Development and application of cellular automata-based urban inundation and water cycle model CAW)

  • 이송희;최현진;우현아;김민영;이은형;김상현;노성진
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.165-179
    • /
    • 2024
  • 도시 지역의 홍수 위험을 완화하고 지속 가능한 수자원을 관리하기 위해서는 도시 홍수와 물순환의 연계 해석이 필수적이다. 본 연구는 간단한 전환 규칙을 통해 침수의 시공간적 변화를 모의하는 셀룰러 오토마타 기법을 이용하여 고해상도 도시침수 및 물순환 해석 모형 CAW (Cellular Automata-based integrated Water cycle model)를 개발하고, 그 적용성을 평가하였다. 개발된 모형을 미국 포틀랜드 도심지 유역에 적용하고, 물리 기반 모형 및 기존 셀룰러 오토마타 기반 모형의 침수 해석 결과와 비교하여 도시침수 재현의 적절성을 평가하였다. 연구 결과, 침수 검증 대상 지점에 대한 CAW 모형의 최대 침수심 분포는 확산파 방정식을 모사하는 WCA2D (Weighted Cellular Automata 2 Dimension) 모형과 평균오차 값이 1.3 cm로 유사하게 모의되었고, 이진 패턴 유사도 검증에서 HR 0.91, FAR 0.02, CSI 0.90으로 비교적 높은 유사성을 나타내며 모형의 침수 해석 적용성을 검증하였다. 또한, 토지피복 및 토양 조건이 침수, 침투에 미치는 영향을 시험 평가한 결과, 불투수율이 41% 더 높은 지역에서의 침투와 최대 침수심이 각각 54%(4.16 mm/m2) 감소 및 10%(2.19 mm/m2) 증가하였다. CAW 모형을 이용하여 도시 유역의 다양한 토지피복 및 토양 특성을 고려한 고해상도 물순환 및 도시침수 연계 모의 해석이 가능할 것으로 기대된다.

프롬프트 엔지니어링을 통한 GPT-4 모델의 수학 서술형 평가 자동 채점 탐색: 순열과 조합을 중심으로 (Exploring automatic scoring of mathematical descriptive assessment using prompt engineering with the GPT-4 model: Focused on permutations and combinations)

  • 신병철;이준수;유연주
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.187-207
    • /
    • 2024
  • 본 연구에서는 GPT-4 기반의 ChatGPT를 활용한 서술형 평가 문항의 자동 채점 가능성을 탐색하기 위해 교사와 GPT-4 기반의 ChatGPT의 채점 결과를 비교, 분석하였다. 이를 위해 학생평가지원포털에 있는 고등학교 1학년 순열과 조합 단원에서 3개의 서술형 문항을 선정하였다. 문항 1, 2는 문제 해결 전략이 1가지인 문항이고, 문항 3은 문제 해결 전략이 2가지 이상인 문항이었다. 8년 이상의 교육 경력이 있는 교사 2명이 학생 204명의 답안을 채점하고, GPT-4 기반의 ChatGPT의 채점 결과와 비교하였다. 문항별로 Few-Shot-CoT, SC, 구조화, 반복 프롬프트 기법 등을 활용하여 채점을 위한 프롬프트를 구성하였고, 이를 GPT-4 기반의 ChatGPT에 입력하여 채점하였다. 채점 결과, 문항 1, 2는 교사의 채점 결과와 GPT-4의 채점 결과 사이에 강한 상관관계를 충족하였다. 문제 해결 전략이 2가지인 문항 3은 먼저 채점 전 학생 답안을 문제 해결전략별로 분류하는 프롬프트를 GPT-4 기반의 ChatGPT에 입력하여 답안을 분류하였다. 이후 유형별로 채점 프롬프트를 적용하여 GPT-4 기반의 ChatGPT에 입력하여 채점하였고, 채점 결과 역시 교사의 채점 결과와 강한 상관관계가 나타났다. 이를 통해 프롬프트 엔지니어링을 활용한 GPT-4 모델이 교사의 채점을 보조할 수 있는 가능성을 확인하였으며 본 연구의 한계점 및 향후 연구 방향을 제시하였다.

포토그래메트리 기반 페이셜 캡처를 통한 버추얼 휴먼 제작 및 활용 (Creating and Utilization of Virtual Human via Facial Capturing based on Photogrammetry)

  • 길운;강해도;저우자니;조성훈;윤태수
    • 융합신호처리학회논문지
    • /
    • 제25권2호
    • /
    • pp.113-118
    • /
    • 2024
  • 최근 들어 인공지능, 컴퓨터 그래픽기술이 진화하면서 영화,광고, 방송, 게임, SNS 등 여러매체를 통해 다양한 가상휴먼이 등장하고 있다. 특히, 가상인플루언서를 중심으로 한 광고 마케팅 시장에서 가상휴먼은 시간과 비용 측면에서 기업의 중요한 홍보수단으로 이미 중요성이 입증된 상태이다. 국내는 가상 인플루언서 시장의 태동기 단계로 대기업 및 스타트업 경계없이 가상인플루언서 관련 신규 서비스를 출시 준비를 하고자 하나, 그 개발 프로세스가 공개되어 있지 않아 많은 비용을 지불해야 하는 상황이다. 이런 기업의 요구사항과 애로사항을 해결하기 위해 본 논문에서는 실사기반의 가상휴먼을 제작하기 위한 포토그래메트리기반 페이셜 캡춰 시스템을 구현하고, 이를 활용한 가상휴먼 모델링 및 활용사례에 대하여 고찰한다. 페이셜 캡처 후 실제 애니메이션이 가능한 과정까지의 복잡한 CG 작업 단계를 간소화할 수 있는 언리얼엔진기반의 메타휴먼 모델링을 통해 비용과 품질면에서 최적의 워크플로우에 대해서도 고찰하고, 또한 인스타그램 등 SNS마케팅에 활용한 사례에 대해서도 소개한다. 언리얼엔진기반의 워크플로우를 통해 기존의 CG작업과의 비교를 통해 제안한 워크플로우의 성능을 입증한다.

멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용 (Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network)

  • 하태준;김희상;강성욱;이두희;김우진;문기원;최현수;김정현;김윤;박소현;박상원
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.187-201
    • /
    • 2024
  • 골다공증은 전 세계적으로 주요한 건강 문제임에도 불구하고, 골절 발생 전까지 쉽게 발견되지 않는 단점을 가지고 있습니다. 본 연구에서는 골다공증 조기 발견 능력 향상을 위해, 복부 컴퓨터 단층 촬영(Computed Tomography, CT) 영상을 활용하여 정상-골감소증-골다공증으로 구분되는 골다공증 단계를 체계적으로 분류할 수 있는 딥러닝(Deep learning, DL) 시스템을 개발하였습니다. 총 3,012개의 조영제 향상 복부 CT 영상과 개별 환자의 이중 에너지 X선 흡수 계측법(Dual-Energy X-ray Absorptiometry, DXA)으로 얻은 T-점수를 활용하여 딥러닝 모델 개발을 수행하였습니다. 모든 딥러닝 모델은 비정형 이미지 데이터, 정형 인구 통계 정보 및 비정형 영상 데이터와 정형 데이터를 동시에 활용하는 다중 모달 방법에 각각 모델 구현을 실현하였으며, 모든 환자들은 T-점수를 통해 정상, 골감소증 및 골다공증 그룹으로 분류되었습니다. 가장 높은 정확도를 갖는 모델 우수성은 비정형-정형 결합 데이터 모델이 가장 우수하였으며, 수신자 조작 특성 곡선 아래 면적이 0.94와 정확도가 0.80를 제시하였습니다. 구현된 딥러닝 모델은 그라디언트 가중치 클래스 활성화 매핑(Gradient-weighted Class Activation Mapping, Grad-CAM)을 통해 해석되어 이미지 내에서 임상적으로 관련된 특징을 강조했고, 대퇴 경부가 골다공증을 통해 골절 발생이 높은 위험 부위임을 밝혔습니다. 이 연구는 DL이 임상 데이터에서 골다공증 단계를 정확하게 식별할 수 있음을 보여주며, 조기에 골다공증을 탐지하고 적절한 치료로 골절 위험을 줄일 수 있는 복부 컴퓨터 단층 촬영 영상의 잠재력을 제시할 수 있습니다.

복합 적층판의 딥러닝 기반 파괴 모드 결정 (Deep Learning-based Fracture Mode Determination in Composite Laminates)

  • 무하마드 무자밀 아자드;아타 우르 레만 샤;M.N. 프라브하카르;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2024
  • 본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.

적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로 (Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies)

  • 허준영;양진용
    • 지능정보연구
    • /
    • 제20권1호
    • /
    • pp.35-48
    • /
    • 2014
  • 2013년 건설 경기 전망 보고서에 따르면 주택건설경기 침체 상황의 지속으로 건설 기업의 유동성 위기가 지속될 것으로 전망된다. 건설업은 파산으로 인한 사회적 파급효과가 다른 산업에 비해 큰 편이지만, 업종의 특성상 다른 산업과는 상이한 자본구조와 부채비율, 현금흐름을 가지고 있어서 기업의 파산 예측이 더 어려운 측면이 있다. 건설업은 레버리지가 큰 산업으로 부채비율이 매우 높은 업종이며 현금흐름이 프로젝트 후반부에 집중되는 특성이 있다. 그리고 경기사이클에 따른 부침이 매우 심하여 경기하강국면에선 파산이 급증하는 양상을 보인다. 건설업이 레버리지 산업인 이상 건설업체의 파산율 증가는 여신을 공여한 은행에 큰 부담으로 작용한다. 그럼에도 그간의 파산예측모델이 주로 금융기관에 집중되어 왔고 건설업종에 특화된 연구는 드물었다. 기업의 재무 자료를 바탕으로 한 파산 예측 모델에 대한 연구는 오래 전부터 다양하게 진행되었다. 하지만, 일반적인 기업 전체를 대상으로 하는 모델이기 때문에, 건설 기업과 같이 유동성이 큰 기업의 예측에는 적절하지 못할 수 있다. 건설 산업은 오랜 사업 기간과 대규모 투자, 그리고 투자금 회수가 오래 걸리는 특징을 갖는 자본 집약 산업이다. 이로 인해 다른 산업과는 상이한 자본 구조를 갖기 마련이고, 다른 산업의 기업 재무 위험도를 판단하는 기준과 동일한 적용이 곤란할 수 있다. 최근에는 기계 학습을 바탕으로 한 기업 파산 예측 연구가 활발하다. 기계 학습의 대표적 응용 분야인 패턴 인식을 기업의 파산 예측에 응용한 것이다. 기업의 재무 정보를 바탕으로 패턴을 작성하고 이 패턴이 파산 위험 군에 속하는지 안전한 군에 속하는지 판단하는 것이다. 전통적인 Z-Score와 기계 학습을 이용한 파산 예측과 같은 기존 연구들은 특정 산업 분야가 아닌 일반적인 기업을 대상으로 하기 때문에 기업들의 특성을 전혀 고려하고 있지 못하다. 본 논문에서는 건설 기업을 규모에 따라 각 기법들의 예측 능력을 비교하여 적응형 부스팅이 가장 우수함을 확인하였다. 본 논문은 건설 기업을 자본금 규모에 따라 세 등급으로 분류하고 각각에 대해 적응형 부스팅의 예측력을 분석하였다. 실험 결과 적응형 부스팅이 다른 기법에 비해 예측 결과가 좋았고, 특히 자본금 규모가 500억 이상인 기업의 경우 아주 우수한 결과를 보였다.