• Title/Summary/Keyword: artificial immune systems

Search Result 57, Processing Time 0.029 seconds

Intrusion Detection System of Network Based on Biological Immune System (생체 면역계를 이용한 네트워크 침입탐지 시스템)

  • Sim, Kwee-Bo;Yang, Jae-Won;Lee, Dong-Wook;Seo, Dong-Il;Choi, Yang-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.411-416
    • /
    • 2002
  • Recently, the trial and success of malicious cyber attacks has been increased rapidly with spreading of Internet and the activation of a internet shopping mall and the supply of an online internet, so it is expected to make a problem more and more. Currently, the general security system based on Internet couldn't cope with the attack properly, if ever, other regular systems have depended on common softwares to cope with the attack. In this paper, we propose the positive selection mechanism and negative selection mechanism of T-cell, which is the biological distributed autonomous system, to develop the self/non-self recognition algorithm, the anomalous behavior detection algorithm, and AIS (Artificial Immune System) that is easy to be concrete on the artificial system. The proposed algorithm can cope with new intrusion as well as existing one to intrusion detection system in the network environment.

Antigen Delivery Systems: Past, Present, and Future

  • Hyun-Jeong Ko;Yeon-Jeong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.370-387
    • /
    • 2023
  • The COVID-19 pandemic has increased demand for safe and effective vaccines. Research to develop vaccines against diseases including Middle East respiratory syndrome, Ebolavirus, human immunodeficiency virus, and various cancers would also contribute to global well-being. For successful vaccine development, the advancement of technologies such as antigen (Ag) screening, Ag delivery systems and adjuvants, and manufacturing processes is essential. Ag delivery systems are required not only to deliver a sufficient amount of Ag for vaccination, but also to enhance immune response. In addition, Ag types and their delivery systems determine the manufacturing processes of the vaccine product. Here, we analyze the characteristics of various Ag delivery systems: plasmids, viral vectors, bacterial vectors, nanoparticles, self-assembled particles, natural and artificial cells, and extracellular vesicles. This review provides insight into the current vaccine landscape and highlights promising avenues of research for the development and improvement of Ag delivery systems.

Emotion recognition from brain waves using artificial immune system

  • Park, Kyoung ho;Sasaki Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.52.5-52
    • /
    • 2002
  • In this paper, we develop analysis models for classification of temporal data from human subjects. The study focuses on the analysis of electroencephalogram (EEG) signals obtained during various emotional states. We demonstrate a generally applicable method of removing EOG and EMG artifacts from EEGs based on independent component analysis (ICA). All EEG channel maps were interpolated from 10 EEG subbands. ICA methods are based on the assumptions that the signals recorded on the scalp are mixtures of signals from independent cerebral and artifactual sources, that potentials arising from different parts of the brain, scalp and body are summed linearly at the electrodes and that prop...

  • PDF

Self-Change Detection Algorithms using the Artificial Immune System (인공 면역계를 이용한 자기변경 검사 알고리즘)

  • 선상준;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.320-324
    • /
    • 2001
  • According to the rapid growth of computer and internet recently, A hacking to steal infonnations and the computer vinls to destroy the data in computer are now prevailing in the whole world. A study of methods to protect the data of computer is in progress. One of the study is constmction of computer immune system using biological immune system tbat has ability of removal and protection from extemal invasion. In this paper, we make a change detection algorithm which is based on ability of distinction between self and nonself in T-cytotoxic cell that is one of biological immune cell. In algorithm, MHC receptors are composed of a part of self-file that is recognized as itself and those shall distinguish self-file from the changed file. As a result of applying this algorithm to the changed self-files, we prove the efficacy of detection of the self-files changed by computer virus and hacking.

  • PDF

Self-Recognition Algorithm of Artificial Immune System (인공면역계의 자기-인식 알고리즘)

  • 심귀보;선상준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.801-806
    • /
    • 2001
  • According as many people use a computer newly, damage of computer virus and hacking is rapidly increasing by the crucial users A computer virus is one of program in computer and has abilities of self reproduction ad destruction like a virus of biology. And hacking is to rob a person's data in a intruded computer and to delete data in a person s computer from the outside. To block hacking that is intrusion of a person s computer and the computer virus that destroys data, a study for intrusion-detection of system and virus detection using a biological immune system is in progress. In this paper, we make a model of positive selection and negative selection of self-recognition process that is ability of T-cytotoxic cell that plays an important part in biological immune system. So we embody a self-nonself distinction algorithm in computer, which is an important part when we detect an infected data by computer virus and a modified data by intrusion from the outside. The composed self-recognition process distinguishes self-file from the changed files. To prove the efficacy of self-recognition algorithm, we use simulation by a cell change and a string change of self file.

  • PDF

Distributed Autonomous Robotics System based on Classifier System and Artificial Immune Network (분류자 시스템과 인공 면역 네트워크에 기반한 자율 분산 로봇 시스템 개발)

  • 황철민;박창현;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.85-88
    • /
    • 2004
  • 본 논문에서는 인공 면역 네트워크와 분류자 시스템을 이용한 자율 분산 로봇 시스템을 제안한다. 시스템에서 각 로봇의 행동은 전역행동과 지역행동으로 구성된다. 전역행동은 작업을 찾고 수행하기 위해 필요한 환경을 조성하는데 필요한 전반적인 행동들을 결정하고, 지역 행동은 작업을 수행할 때 각 로봇들이 어떤 방식으로 동작하는가를 결정한다. 이때 전역 행동은 인공 면역 네트워크를 이용하여 결정되며 작업을 빠른 속도로 탐색하며 탐색한 작업 주위로 적절한 수의 로봇이 집합하도록 한다. 또한 지역 행동은 분류자 시스템을 이용하여 결정되며 작업을 수행하는데 적절한 로봇의 역할을 결정한다.

  • PDF

Self-Change Detection Algorithms using the Artificial Immune System (인공 면역계를 이용한 자기변경 검사 알고리즘)

  • 선상준;전호병;박세현;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.183-186
    • /
    • 2001
  • 최근 컴퓨터와 인터넷의 급속한 발전과 더불어 컴퓨터의 데이터를 파괴하는 바이러스나 정보를 빼내기 위한 해킹 등이 만연하고 있다. 이에 컴퓨터의 데이터를 보호하기 위한 방법들이 연구중에 있는데 이 중 외부의 침입물질에 대해 자체적인 보호와 제거기능을 가지는 생체면역시스템을 이용한 컴퓨터면역시스템 구축에 대해 활발히 연구가 진행되고 있다. 생체 면역시스템은 바이러스나 병원균 등의 낮선 외부 침입자로부터 자신을 보호하고 침입자를 제거한다. 본 논문에서는 생체면역시스템의 면역세포 중 하나인 세포독성 T세포의 자기(Self)와 비자기(Nonself)를 구분하는 기능을 이용해 자기변경 검사 알고리즘을 구현하였다. 구현한 알고리즘은 자기로 인식하는 자기파일에서 자기를 구분하는 MHC 인식부를 구성한다. 이렇게 구성한 MHC 인식부는 자기파일을 대표하는 값을 이용하여 변경된 파일을 구분한다. 이 알고리즘을 변경된 자기파일에 적용함으로써 컴퓨터 해킹이나 바이러스에 의한 자기파일의 변경 검사의 유효성을 검증한다.

  • PDF

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.

DIntrusion Detection in WSN with an Improved NSA Based on the DE-CMOP

  • Guo, Weipeng;Chen, Yonghong;Cai, Yiqiao;Wang, Tian;Tian, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5574-5591
    • /
    • 2017
  • Inspired by the idea of Artificial Immune System, many researches of wireless sensor network (WSN) intrusion detection is based on the artificial intelligent system (AIS). However, a large number of generated detectors, black hole, overlap problem of NSA have impeded further used in WSN. In order to improve the anomaly detection performance for WSN, detector generation mechanism need to be improved. Therefore, in this paper, a Differential Evolution Constraint Multi-objective Optimization Problem based Negative Selection Algorithm (DE-CMOP based NSA) is proposed to optimize the distribution and effectiveness of the detector. By combining the constraint handling and multi-objective optimization technique, the algorithm is able to generate the detector set with maximized coverage of non-self space and minimized overlap among detectors. By employing differential evolution, the algorithm can reduce the black hole effectively. The experiment results show that our proposed scheme provides improved NSA algorithm in-terms, the detectors generated by the DE-CMOP based NSA more uniform with less overlap and minimum black hole, thus effectively improves the intrusion detection performance. At the same time, the new algorithm reduces the number of detectors which reduces the complexity of detection phase. Thus, this makes it suitable for intrusion detection in WSN.

Modelling of Artificial Immune System for Development of Computer Immune system and Self Recognition Algorithm (컴퓨터 면역시스템 개발을 위한 인공면역계의 모델링과 자기인식 알고리즘)

  • Sim, Kwee-Bo;Kim, Dae-Su;Seo, Dong-Il;Rim, Kee-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.52-60
    • /
    • 2002
  • According as many people use a computer newly, damage of computer virus and hacking is rapidly increasing by the crucial users. A computer virus is one of program in computer and has abilities of self reproduction and destruction like a virus of biology. And hacking is to rob a person's data in a intruded computer and to delete data in a Person s computer from the outside. To block hacking that is intrusion of a person's computer and the computer virus that destroys data, a study for intrusion detection of system and virus detection using a biological immune system is in progress. In this paper, we make a model of positive and negative selection for self recognition which have a similar function like T-cytotoxic cell that plays an important role in biological immune system. We embody a self-nonself distinction algorithm in computer, which is an important part when we detect an infected data by computer virus and a modified data by intrusion from the outside. And we showed the validity and effectiveness of the proposed self recognition algorithm by computer simulation about various infected data obtained from the cell change and string change in the self file.