• Title/Summary/Keyword: artificial disaster

Search Result 238, Processing Time 0.024 seconds

Study on Physical Characteristics of Historical and Artificial Ground Acceleration (역사지진 및 인공지진의 물리적 특성에 관한 연구)

  • 이대형;정영수;전환석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-44
    • /
    • 1998
  • Because of the continual occurrence of minor and moderate earthquakes in Korean peninsula, it is generally considered that Korean is not located in a safe region against probable earthquake any more, even though being recognized as a safe country in earthquake. It is in particular noted that nowadays there has been much concern about unexpected tragedy due to probable earthquake since the disaster of 1995 kobe earthquake. Thus, the objective of this research is to develop appropriate design spectrum which could be practicably used in seismic design of important structures taking into consideration of local physical characteristics. Particularly, we have to keep in mind the lessons from 1985 Mexico earthquake which had disregarded deep research on local ground conditions, being a possible magnification phenomena of ground motions in weak soil layer. Various spectra has been described based on the analysis of historical earthquakes, and generate the artificial ground acceleration. Also, rational numbers of artificial ground acceleration is investigated by the seismic analysis for skew slab bridges.

  • PDF

Determination of the Groundwater Yield of horizontal wells using an artificial neural network model incorporating riverside groundwater level data (배후지 지하수위를 고려한 인공신경망 기반의 수평정별 취수량 결정 기법)

  • Kim, Gyoo-Bum;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.583-592
    • /
    • 2018
  • Recently, concern has arisen regarding the lowering of groundwater levels in the hinterland caused by the development of high-capacity radial collector wells in riverbank filtration areas. In this study, groundwater levels are estimated using Modflow software in relation to the water volume pumped by the radial collector well in Anseongcheon Stream. Using the water volume data, an artificial neural network (ANN) model is developed to determine the amount of water that can be withdrawn while minimizing the reduction of groundwater level. We estimate that increasing the pumping rate of the horizontal well HW-6, which is drilled parallel to the stream direction, is necessary to minimize the reduction of groundwater levels in wells OW-7 and OB-11. We also note that the number of input data and the classification of training and test data affect the results of the ANN model. This type of approach, which supplements ANN modeling with observed data, should contribute to the future groundwater management of hinterland areas.

Rapid Self-Configuration and Optimization of Mobile Communication Network Base Station using Artificial Intelligent and SON Technology (인공지능과 자율운용 기술을 이용한 긴급형 이동통신 기지국 자율설정 및 최적화)

  • Kim, Jaejeong;Lee, Heejun;Ji, Seunghwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1357-1366
    • /
    • 2022
  • It is important to quickly and accurately build a disaster network or tactical mobile communication network adapting to the field. In configuring the traditional wireless communication systems, the parameters of the base station are set through cell planning. However, for cell planning, information on the environment must be established in advance. If parameters which are not appropriate for the field are used, because they are not reflected in cell planning, additional optimization must be carried out to solve problems and improve performance after network construction. In this paper, we present a rapid mobile communication network construction and optimization method using artificial intelligence and SON technologies in mobile communication base stations. After automatically setting the base station parameters using the CNN model that classifies the terrain with path loss prediction through the DNN model from the location of the base station and the measurement information, the path loss model enables continuous overage/capacity optimization.

Selecting Aquifer Artificial Recharge Methods Based on Characteristics of the Target Aquifer (주입대상 대수층의 특성을 고려한 인공함양 방법 선정 연구)

  • Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.483-494
    • /
    • 2019
  • This study aimed to determine the extent of artificial aquifer recharge and to evaluate appropriate recharge techniques based on field investigations and comparative analysis of each recharge method. Characteristics of the aquifer determine the target aquifer and the recharge method for artificial groundwater recharge. Electrical conductivity surveys, drilling, permeability tests, and grain-size analysis indicate that the hydraulic conductivity of weathered soil and weathered rock is higher than that of upper unconsolidated soil. Pumping tests indicate that the groundwater level was stable at a depth of 12 m until 9 hours of pumping, but after that it dropped again, indicating anisotropic aquifer characteristics. Three types of artificial recharge method were reviewed, including recharge wells, ditches, and ponds, and a combination of two methods is proposed: a recharge well system directly injecting into weathered soil and rock sections with good permeability, and an injection ditch that can increase the recharge effect by line-type injection in the upstream area. The extent of groundwater recharge by the selected methods will be evaluated through on-site tests and if their applicability is verified, they will contribute to securing water in areas of water shortage.

Artificial Accelerated Weathering of Volcanic Rocks from Ulleungdo Island (인공풍화가속실험을 통한 울릉도에 분포하는 화산암의 풍화특성 고찰)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.499-510
    • /
    • 2015
  • Artificial accelerated weathering test evaluated rocks from near the circuit road of Ulleungdo island, approximately 120 km from east of the Korean Peninsula. The tests subjected rock specimens to conditions based on the climate of the island. The specimens (such as basaltic breccia, trachyte, volcanic breccia) were preliminarily classified using a TAS diagram (XRF data) and based on the constituent minerals (XRD data); they were further classified by weathering degree according to their absorption ratios. During the artificial accelerated weathering, the absorption ratio of most of the specimens increased, but the point-load strength did not decrease in most cases, except for the volcanic breccia. The greater initial absorption ratio of trachyte rock specimen in comparison with the other specimens led to a greater increase of its absorption ratio during the artificial accelerated weathering test. The volcanic breccia specimens showed the greatest increase of absorption ratio and the biggest reduction ratio of the point- load strength during the tests. These results could aid prediction of the weathering rate of rocks in Ulleungdo island subjected to weathering processes; trachyte which appears to accelerate with time, and volcanic breccia whose mechanical strength can largely decrease in a relative short period of time. Proper measures therefore appear necessary for the prevention of natural disaster such as rock fall and landslide around the circuit road.

A Study on Optical Design Factors by Artificial Recharge Performance (인공함양 주입성능평가에 의한 설계요소 산정 연구)

  • Won, Kyoung-Sik;Lee, Yeoung-Dong;Shin, Dong-Min;Kim, Byeong-Jun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.603-615
    • /
    • 2020
  • The design factors of artificial recharge are determined by considering the hydrogeological characteristics of the aquifer. The optimal design factors for artificial recharge were derived after performing the injection tests step by step for each injection type (vertical well, ditch and mixed type), which were built in the test site of the study area. It was analyzed that the difference in the injection effect according to the diameter of the injection well was not large, and the 100 mm well was evaluated as appropriate in consideration of the availability and economy of land use. Since the injection effect was well maintained even in the upper rock, the depth of the injection well was proposed for the alluvial layer and the upper rock layer. On the other hand, in four cases of filter media in the ditch, it was analyzed that the penetration efficiency and the hydraulic interference effect indicated excellent injection performance when a filter medium of 10 to 30 mm diameter was filled in the ditch. In addition, the proper spacing of the injection wells was analyzed as 9~12 m considering the interference efficiency. The interference efficiency attenuation coefficient per 1 m of hole spacing was calculated to be 1.75% in this area. In the future study, the artificial recharge design factors obtained in this stage are applied and verified on site construction and operation. Also it is expected to contribute to securing water in areas where there is always a lack of water.

Improving accuracy of SNS-based Disaster Notification System using Morphological Analysis and Artificial Neural Network (형태소분석과 인공신경망을 활용한 SNS 기반 재난알림시스템의 정확도 향상)

  • Lee, Dong-Ho;Kang, Suk-Min;Kim, Soo-Hyun;Jo, Sung-Jae;Park, Chan-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.881-884
    • /
    • 2017
  • 스마트 디바이스가 대중화 되면서 각종 사건 사고에 대한 데이터가 SNS 상에 실시간으로 업데이트 된다. SNS의 이런 특성을 이용하여 이용자 개개인이 사고감지센서의 역할을 하면 빠른 사고감지가 가능하다. 하지만 기존 연구들은 단순히 키워드의 출현 빈도로 사고를 판단하는 방식과, 문법파괴 요소가 많은 트위터의 특성으로 인해 정확성에서 한계를 보인다. 본 연구에서는 사고감지의 정확도를 높이기 위해 형태소로 분석한 트윗을 벡터화하여 다층퍼셉트론신경망으로 학습시키는 모델을 구현하였다. 연구 결과 일반명사로 이루어진 40개의 단어를 사용했을 때 가장 높은 82.58%의 정확도를 얻었다.

Improvement of Cloud Service Quality and Performance Management System (클라우드 서비스 품질·성능 관리체계의 개선방안)

  • Kim, Nam Ju;Ham, Jae Chun;Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.83-88
    • /
    • 2021
  • Cloud services have become the core infrastructure of the digital economy as a basis for collecting, storing, and processing large amounts of data to trigger artificial intelligence-based services and industrial innovation. Recently, cloud services have been spotlighted as a means of responding to corporate crises and changes in the work environment in a national disaster caused by COVID-19. While the cloud is attracting attention, the speed of adoption and diffusion of cloud services is not being actively carried out due to the lack of trust among users and uncertainty about security, performance, and cost. This study compares and analyzes the "Cloud Service Quality and Performance Management System" and the "Cloud Service Certification System" and suggests complementary points and improvement measures for the cloud service quality and performance management system.

Occurrence of Fusarium Wilt in Basil Caused by Fusarium oxysporum in Korea

  • Wan-Gyu Kim;Gyo-Bin Lee;Hyo-Won Choi;Weon-Dae Cho
    • The Korean Journal of Mycology
    • /
    • v.51 no.4
    • /
    • pp.397-403
    • /
    • 2023
  • Wilt symptoms were observed in basil (Ocimum basilicum) plants grown in a vinyl greenhouse located in Gokseong, Korea, during crop disease surveys conducted in August 2022. The symptoms appeared as wilting of the plants and brown to dark brown longitudinal streaks on the stems at or above the soil line. The disease incidence among the plants in the vinyl greenhouse was 5-20%. Six isolates of Fusarium sp. were obtained from stem lesions and identified as Fusarium oxysporum species complex based on their morphological characteristics. Among the isolates, two were used for phylogenetic analysis and pathogenicity test. Phylogenetic analysis revealed that these isolates belonged to F. oxysporum. Pathogenicity of the isolates was confirmed through artificial inoculation test. The symptoms induced by the isolates were similar to those observed in basil plants in the investigated vinyl greenhouse. This is the first report of F. oxysporum causing Fusarium wilt in basil in Korea.

Utilization of Satellite Technologies for Agriculture

  • Ju-Kyung Yu;Jinhyun Ahn;Gyung Deok Han;Ho-Min Kang;Hyun Jo;Yong Suk Chung
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.547-552
    • /
    • 2024
  • Satellite technology has emerged as a powerful tool in modern agriculture, offering capabilities for Earth observation, land-use pattern analysis, crop productivity assessment, and natural disaster prevention. This mini-review provides a concise overview of the applications and benefits of satellite technologies in agriculture. It discusses how satellite imagery enables the monitoring of crop health, identification of land-use patterns, evaluation of crop productivity, and mitigation of natural disasters. Farmers and policymakers can make informed decisions to optimize agricultural practices, enhance food security, and promote sustainable agriculture by leveraging satellite data. Integrating satellite technology with other advancements, such as artificial intelligence and precision farming techniques, holds promise for further revolutionizing the agricultural sector. Overall, satellite technology has immense potential for improving agricultural efficiency, resilience, and sustainability in the face of evolving environmental challenges.