• Title/Summary/Keyword: artificial constraint deletion

Search Result 6, Processing Time 0.026 seconds

Optimization of RC Piers Based on Efficient Reanalysis Technique (효율적인 재해석 기법에 의한 RC 교각의 최적설계)

  • 조효남;민대홍;신만규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.199-204
    • /
    • 2000
  • In this study, an optimum design algorithm using efficient reanalysis is proposed for seismic design of RC Piers. The proposed algorithm for optimization of RC Piers is based on efficient reanalysis technique. Considering structural behavior of RC Piers, several other approximation techniques, such as artificial constraint deletion is introduced to increase the efficiency of optimization. The efficiency and robustness of the proposed algorithm increase the proposed reanalysis technique is demonstrated by comparing it with a conventional optimization algorithm. A few of design examples are optimized to show the applicability of the proposed algorithm.

  • PDF

Optimization of Reinforced Concrete Piers Based on Efficient Reanalysis Technique (효율적인 재해석 기법에 의한 철근콘크리트 교각의 최적설계)

  • 조효남;민대홍;신만규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.505-513
    • /
    • 2001
  • In this study, an optimum design algorithm using efficient reanalysis is proposed for seismic design of Reinforced Concrete (RC) piers. The proposed algorithm for optimization of RC piers is based on efficient reanalysis technique. Considering structural behavior of RC piers, the other approximation technique such as artificial constraint deletion is introduced to increase the efficiency of optimization. The efficiency and robustness of the proposed algorithm including the proposed reanalysis technique is demonstrated by comparing it with a conventional optimization algorithm. A few of design examples are optimized to show the applicability of the proposed algorithm.

  • PDF

Automated Optimum Design Program for Steel Box Girder Bridges (강상자형교의 자동화 최적설계 프로그램)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.475-485
    • /
    • 2000
  • In this study, an automated optimum design program for steel box girder bridges has been developed for the optimum design of composite steel box girder bridges. The design constraints required for the optimum design of steel box girder bridges are based on the Korean standard bridge specification. Considering characteristics of steel box girder bridges, several approximation techniques, such as artificial constraint deletion, variable linking and stress reanalysis technique etc. are also introduced to enhance the efficiency of optimization. The developed program is mainly composed of major sub-system modules including structural analysis module using commercial structural analysis program such as RM-SPACEFRAME, optimum design module, pre-process module for friendly user input, and post-processor module for office automation. In addition, in order to demonstrate the efficiency and applicability of the developed optimum design program for steel box girder bridges, a few numerical examples are applied. Based on the results of the application, it may be stated that the automatic optimum design program developed in this study can be a prototype model for the developement of optimum design program for other type of bridge.

  • PDF

Multi-Level and Multi-Objective Optimization of Framed Structures Using Automatic Differentiation (자동미분을 이용한 뼈대구조의 다단계 다목적 최적설계)

  • Cho, Hyo-Nam;Min, Dae-Hong;Lee, Kwang-Min;Kim, Hoan-Kee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.177-186
    • /
    • 2000
  • An improved multi-level(IML) optimization algorithm using automatic differentiation (AD) for multi-objective optimum design of framed structures is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed algorithm, multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses such as moments, frequencies, and strain energy with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by AD that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. The efficiency and robustness of the IML algorithm, compared with a plain multi-level (PML) algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties (동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Multi-Level Optimization of Framed Structures Using Automatic Differentiation (자동미분을 이용한 뼈대구조의 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Sung;Min, Dae-Hong;Lee, Kwang-Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.569-579
    • /
    • 2000
  • An improved multi-level (IML) optimization algorithm using automatic differentiation (AD) of framed structures is proposed in this paper. For the efficiency of the proposed algorithm, multi-level optimization techniques using a decomposition method that separates both system-level and element-level optimizations, that utilizes and an artificial constraint deletion technique, are incorporated in the algorithm. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses such as moments and frequencies with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by AD that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. The efficiency and robustness of the IML algorithm, compared with a plain multi-level (PML) algorithm, is successfully demonstrated in the numerical examples.

  • PDF