• Title/Summary/Keyword: artificial blood

Search Result 324, Processing Time 0.03 seconds

In vitro and in vivo Application of PLGA Nanofiber for Artificial Blood Vessel

  • Kim, Mi-Jin;Kim, Ji-Heung;Yi, Gi-Jong;Lim, Sang-Hyun;Hong, You-Sun;Chung, Dong-June
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.345-352
    • /
    • 2008
  • Poly(lactic-co-glycolic acid) (PLGA) tubes (5 mm in diameter) were fabricated using an electro spinning method and used as a scaffold for artificial blood vessels through the hybridization of smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from canine bone marrow under previously reported conditions. The potential clinical applications of these artificial blood vessels were investigated using a canine model. From the results, the tubular-type PLGA scaffolds for artificial blood vessels showed good mechanical strength, and the dual-layered blood vessels showed acceptable hybridization behavior with ECs and SMCs. The artificial blood vessels were implanted and substituted for an artery in an adult dog over a 3-week period. The hybridized blood vessels showed neointimal formation with good patency. However, the control vessel (unhybridized vessel) was occluded during the early stages of implantation. These results suggest a shortcut for the development of small diameter, tubular-type, nanofiber blood vessels using a biodegradable material (PLGA).

Comparative Analysis of Diagnostic Prediction Algorithm Performance for Blood Cancer Factor Validation and Classification (혈액암 인자 유효성 검증과 분류를 위한 진단 예측 알고리즘 성능 비교 분석)

  • Jeong, Jae-Seung;Ju, Hyunsu;Cho, Chi-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1512-1523
    • /
    • 2022
  • Artificial intelligence application in digital health care has been increasing with its development of artificial intelligence. The convergence of the healthcare industry and information and communication technology makes the diagnosis of diseases more simple and comprehensible. From the perspective of medical services, its practice as an initial test and a reference indicator may become widely applicable. Therefore, analyzing the factors that are the basis for existing diagnosis protocols also helps suggest directions using artificial intelligence beyond previous regression and statistical analyses. This paper conducts essential diagnostic prediction learning based on the analysis of blood cancer factors reported previously. Blood cancer diagnosis predictions based on artificial intelligence contribute to successfully achieve more than 90% accuracy and validation of blood cancer factors as an alternative auxiliary approach.

The Effect of Artificial Sweetener Use on Obesity (인공감미료 섭취가 비만에 미치는 영향)

  • Ju Sam Hwang
    • Archives of Obesity and Metabolism
    • /
    • v.2 no.2
    • /
    • pp.45-53
    • /
    • 2023
  • Despite the emergence of obesity as a significant public health concern, artificial sweeteners have made their way into various food products due to the perception, that they serve as substitutes for sugar. Artificial sweeteners are used to supposedly achieve weight management and health improvement. However, their efficacy and safety remain debatable. Commonly used artificial sweeteners include aspartame, acesulfame potassium, saccharin, and sucralose. This article discusses the effects of artificial sweetener consumption on weight loss, appetite regulation, blood glucose control, and gut microbiota. Research findings, concerning the consumption of artificial sweeteners and their association with body weight, have shown inconsistencies between randomized controlled trials and cohort studies. Studies, comparing artificial sweeteners to sugar, have reported no significant differences in satiety. Although artificial sweeteners have no calories, they can affect blood sugar levels through the cephalic phase insulin response. A recent study suggested that artificial sweeteners influenced the occurrence of diabetes. Due to limitations in the study design, excluding diabetes-influencing factors was not feasible. The evidence showed that artificial sweeteners harbored potential health risks, necessitating further investigation. According to recent studies, the consumption of artificial sweeteners was associated with gut microbiota changes and individual blood sugar responses. It is important to note that artificial sweeteners cannot be considered safe alternatives to sugar, and further research is required.

Mock Circulatory Robot with Artificial Aorta for Reproduction of Blood Pressure Waveform (혈압 파형 재현을 위한 인공 대동맥 기반 모의 순환계 로봇)

  • Jae-Hak Jeong;Yong-Hwa Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.221-228
    • /
    • 2024
  • As the importance of cardiovascular health is highlighted, research on its correlation with blood pressure, the most important indicator, is being actively conducted. Therefore, extensive clinical data is essential, but the measurement of the central arterial blood pressure waveform must be performed invasively within the artery, so the quantity and quality are limited. This study suggested a mock circulatory robot and artificial aorta to reproduce the blood pressure waveform generated by the overlap of forward and reflected waves. The artificial aorta was fabricated with biomimetic silicone to mimic the physiological structure and vascular stiffness of the human. A pressurizing chamber was implemented to prevent distortion of the blood pressure waveform due to the strain-softening of biomimetic silicone. The reproduced central arterial blood pressure waveforms have similar magnitude, shape, and propagation characteristics to humans. In addition, changes in blood pressure waveform due to aging were also reproduced by replacing an artificial aorta with various stiffness. It can be expanded to construct a biosignal database and health sensor testing platform, a core technology for cardiovascular health-related research.

Artificial intelligence-based blood pressure prediction using photoplethysmography signals

  • Yonghee Lee;YongWan Ju;Jundong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.155-160
    • /
    • 2023
  • This paper presents a method for predicting blood pressure using the photoplethysmography signals. First, after measuring the optical blood flow signal, artifacts are removed through a preprocessing process, and a signal for learning is obtained. In addition, weight and height, which affect blood pressure, are measured as additional information. Next, a system is built to estimate systolic and diastolic blood pressure by learning the photoplethysmography signals, height, and weight as input variables through an artificial intelligence algorithm. The constructed system predicts the systolic and diastolic blood pressures using the inputs. The proposed method can continuously predict blood pressure in real time by receiving photoplethysmography signals that reflect the state of the heart and blood vessels, and the height and weight of the subject in an unconstrained method. In order to confirm the usefulness of the artificial intelligence-based blood pressure prediction system presented in this study, the usefulness of the results is verified by comparing the measured blood pressure with the predicted blood pressure.

Pump performance analysis of Axial Flow Blood Pump using CFD (CFD를 활용한 축류형 혈액펌프의 펌프 특성 해석)

  • 최승한;김동욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.288-290
    • /
    • 2003
  • Artificial heart is divided by pulsation flow type and continuous flow type according to blood circulation pattern. Axial flow blood pump is a kind of continuous flow type artificial heart. Axial flow blood pump would be different pump performance according to impeller's shape and rotating velocity. Pump performance be able to compare by flow rate according to differential pressure and Impeller's rotating velocity. It confirms Impeller model of better efficiency according to compare Pump performance of axial flow blood pump using CFD with actual experiment result.

  • PDF

The Effect of Pulsatile Flow on Ultrafiltration In-Vitro Study and Comparison with Roller Pump

  • Lee K.;Jeong J. H.;Mun C. H.;Lee J. C.;Min B. G.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.337-341
    • /
    • 2005
  • Blood pulsation has been reported to have an advantageous effect on extracorporeal blood circulation. However, the study of pulsatile blood flow in renal replacement therapy is very limited. The in-vitro experimental results of pulsatile blood flow on ultrafiltration, when compared with the conventional roller pump, are described in this paper. Methods: Blood flow rate (QB) and transmembrane pressure (TMP) were considered as regulating factors that have an influence on ultrafiltration. Experiments were performed under the condition of equal TMP and OB in both pulsatile and roller pump groups, Several kinds of hollow fiber dialyzers were tested using distilled water containing chemicals as a blood substitute. Mean TMP (mTMP) varied from 10 to 90mmHg while the QB was 200ml/min. Results: Ultrafiltration rate (QUF) was found to be linearly proportional to TMP, whereas QB had little influence on QUF. In addition, QUF was higher in the pulsatile group than the roller pump group at the identical TMP. Conclusion: In the controlled test, QUF increased solely as a consequence of blood pulsation, which implies that the pulse frequency represents an additional and important clinical variable during renal replacement therapy.

A study on the evaluation of artificial cartilage using synthetic biodegradable polymers

  • Oh, Ho-Jung;Lee, Nam-Kyung;Kim, Soon-Nam;Hong, Choong-Man;Lee, Ki-Hong;Yoo, Si-Hyung;Shin, In-Soo;Lim, Jae-Hyun;Choi, Seung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.100.1-100.1
    • /
    • 2003
  • Tissue engineering has arisen to address the extreme shortage of tissues and organs for transplantation and repair. One of the most successful techniques has been the seeding and culturing cells on three-dimensional biodegradable scaffolds in vitro followed by implantaion in vivo. We used PLA and PLGA as biodegradable polymers and rabbit chondrocytes were isolated and applied to PLA and PLGA to make artificial cartilage. To evaluate the biocompatibility and biological safety of polymers, in vitro cytotoxicity and in vivo animal tests were investigated. (omitted)

  • PDF

Synthesis and Use of Artificial Red Cells (인공적혈구의 제조 및 이용)

  • Hah, Jong-Sik;Cho, Eng-Haeng;Kim, Ku-Ja
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.15-26
    • /
    • 1990
  • Hemoglobin was purified from the outdated human red blood cells. Phospholipids were purified from egg yolk and stored in chloroform. The artificial red blood cells (hemosome) were prepared by encapsulation of hemoglobin with phospholipid mutilayer using rotary vacuum evaporator. The shape and size of hemosomes were measured by phase contrast microscope and image analyzer. The function of hemosomes was tested by measuring oxygen dissociation curve using blood gas analyzer. In order to test whether hemosomes are useful as blood substitute they were infused into rats of which one third of total blood were drawn. The results obtained are summarized at followings. 1) Hemosomes were spherical shape and their mean diameter was 0.7 um. 2) Oxygen dissociation curve of hemosomes showed the same figure as that of normal red blood cells. 3) All rats given 1/3 transfusion with hemosomes survived until sacrificed whereas three of four rats given 1/3 transfusion with saline died within 1 hour and the rest of them died within 24 hours.

  • PDF

Study on the Development of Two-Stage Centrifugal Blood Pump for Cardiopulmonary Support System

  • Horiguchi, Hironori;Tsukiya, Tomonori;Nomoto, Takeshi;Takemika, Toratarou;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.142-150
    • /
    • 2014
  • In the cardiopulmonary support system with an ECMO (extracorporeal membrane oxygenation), a higher pump head is demanded for a blood pump. In order to realize a blood pump with higher pump head, higher anti-hemolysis and thrombosis performances, a study on the development of unprecedented multistage blood pump was conducted. In consideration of the application of the blood pump for pediatric patients, a miniature two-stage centrifugal blood pump with the impeller's diameter of 40mm was designed and the performance was examined in experiments and computations. Some useful knowledge for a design of the blood pump with higher anti-hemolysis and thrombosis performances was obtained.