• Title/Summary/Keyword: artificial aggregates

Search Result 111, Processing Time 0.029 seconds

Characteristics of artificial lightweight fine aggregates manufactured by using a vertical fluidizing furnace (수직형 유동층로에서 제조된 인공경량 세골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.54-59
    • /
    • 2009
  • It was difficult for the existing rotary kiln to fabricate the fine aggregates under 3 mm due to the sticking phenomenon between specimens. In this study, the vertical type fluidizing furnace was designed and manufactured by which the lightweight fine aggregates of specific gravity $1.1{\sim}1.7$, water absorption $11{\sim}19%$ could be fabricated from the green body of clay: stone sludge: spent bleaching clay = 60 : 30 : 10 (wt%) without sticking-together happening. The minimum sintering temperature for bloating of aggregates was $1130^{\circ}C$. The specimens sintered over $1140^{\circ}C$ showed the typical bloating characteristics of lightweight aggregates and an inner layer was discovered due to widened cracks on a surface. But the crack on a surface did not propagate into a black core area so had no effect on a water absorption of aggregates. The sintering temperature made the thickness of shell and the black core area thin and expanded respectively but the sintering time did not affect the microsturcture of aggregates. The water absorption of aggregates decreased with increasing temperature owing to increased amount of liquid formed on a surface. Also sintering time affected a lot on a water absorption because it takes a time to form a liquid, which change the open pores to closed pores by blocking.

A study on the black core formation of artificial lightweight aggregates at various sintering atmospheres (인공경량골재의 소성조건이 블랙코어에 미치는 영향)

  • Kim, Yoo-Taek;Ryu, Yu-Gwang;Jang, Chang-Sub;Lee, Ki-Gang;Kang, Seung-Gu;Kim, Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.6
    • /
    • pp.318-323
    • /
    • 2009
  • The lightweight aggregates made of bottom ash (70 wt%) and dredged soil (30 wt%) were prepared to investigate the property differences at various sintering atmospheres. The green aggregates were sintered at $1150^{\circ}C$ and $1200^{\circ}C$ with oxidized, neutralized and reduced atmospheres. The aggregates sintered with oxidized atmosphere showed a clear border between shell and black core area. However, the aggregates sintered with a reduced atmosphere showed only black core area in the entire cross-section of the aggregates. The black core area of the aggregates sintered with a neutralized atmosphere increased with increasing $N_2$ gas flow rates. It was determined that the sintering atmosphere was similar to that of rotary kiln when the CO gas flow was 100 cc/min to make a reduced atmosphere in tube furnace. The water absorption rates of both aggregates from tube furnace with reduced atmosphere and rotary kiln were very similar to each other.

Trend on the Recycling Technologies on the High-efficiency Rapid Cooling Method of Ladle Furnace Slag by the Patent and Paper Analysis (특허와 논문으로 본 제강 환원슬래그의 고효율 급냉 자원순환기술 동향)

  • Kim, Jin Man;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.90-97
    • /
    • 2014
  • The artificial dry silica used as dry aggregates in domestic is collected increasing every year. It is required drying process for the production of dry aggregates, therefore, it is main culprit of the cost up of aggregates and air pollution by using fossil fuel for the solution, it is developed alternative aggregates for the replacement of dry aggregates very ungently. In this article, the patents and papers for the recycling technology on the high-efficiency rapid cooling method of ladle furnace slag were collected and analyzed. The open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) and SCI journals from 1977 to 2013 were investigated. The patents and journals were collected using key-words and filtered by the definition of the technology. The patents and journals were analyzed by the years, countries, companies, and technologies and the technical trends were discussed in this paper.

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

Alkali-Activated Coal Ash(Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete (알칼리 활성화 석탄회(Fly Ash, Bottom Ash) 인공경량골재 및 콘크리트 적용)

  • Jo Byung-Wan;Park Seung-Kook;Kwon Byung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.751-757
    • /
    • 2004
  • Artificial lightweight aggregates and solids were manufactured with coal ash(fly ash, bottom ash). In order to apply alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate to concrete, several experimental studies were performed. Thus, it can be noticed the optimal mix proportion, basic characteristies, mechanical properties and environmental safety of alkali-activated coal ash(fly ash, bottom ash) solid and alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate. Also, the freezing-thawing test property of concrete using the alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate was investigated. As a result, the optimal mixing proportion of coal ash(fly ash, bottom ash) solid to make alkali-activated artificial lightweight aggregates was cement $10\%$, water glass $15\%$, NaOH $10\%$, $MnO_2\;5\%$. Alkali-activated coal ash(fly ash, bottom ash) solid can achieve compressive strength of 36.4 MPa, at 7-days, after the paste was cured at air curing after moist curing during 24 hours in $50^{\circ}C$. Alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate that do impregnation to polymer was improved $10\%$ crushing strength $150\%$, and was available to concrete.

Experimental Study on Development of Artificial Fishing Reefs Using Environment-Friendly Sulfur Concrete (환경친화적인 유황콘크리트 인공어초 개발을 위한 실험적 연구)

  • Park, Sung-Bae;Kim, Seok-Chel;Kim, Kyoung-Hoon;Hong, Chong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.58-64
    • /
    • 2007
  • New artificial fishing reefs are developed using modified sulfur concrete. Modified sulfur concrete, which is made of by-product aggregates and modified sulfur binder, has good properties, including high density, less water absorption, high strength, high salt resistance, and good affinity for living organisms. This paper shows the mechanical properties of modified sulfur concrete and its field tests under the sea. We have found that the pH-neutral materials attach microalgae and seaweed more readily, compared to the pH-high materials.

Reclamation of Inorganic wastes to Artificial Lightweight Aggregates

  • Chang, Hui-Lan;Liaw, Chin-Tson
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.565-570
    • /
    • 2001
  • Annually, Taiwan generates approximately 2 million tons of inorganic wastes in the form of sludge, fly ash and slug. To increase the added value of waste and maintain the increasingly insufficient supply of natural gravel, large public construction projects account for this large demand each year. future architectural trends are leading towards high-rise buildings. In light of the above, Center for Environmental, Safety and Health Technology Development, Industrial Technology Research Institute has developed the technology of manufacturing cold-bonding, sintering and bloating types of lightweight aggregates with a specific gravity ranging between 0.7~1.7, water absorption rate < 30%. The lightweight aggregate verified by physical property tests can be used as a substitute for the natural aggregate, which generally appears in replacing gravel in concrete, soundproofing and heat insulation materials. Doing so would not only moderate waste disposal problems, but also achieve the goal of resource recovery.

  • PDF

Manufacturing artificial lightweight aggregates using coal bottom ash and clay (석탄 바닥재와 점토를 이용한 인공경량골재 제조)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.277-282
    • /
    • 2007
  • The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

Bloating mechanism for coal ash with iron oxide (철분이 많이 함유된 석탄회의 발포거동)

  • Lee, Ki Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study was to figure out the impacts of iron oxide types and dosages to bloating when producing artificial lightweight aggregates by utilization of recycled resources such as bottom-ash, reject-ash and dredgedsoil. In order to figure out chemical characteristics of raw materials, XRD and XRF analyses were performed. 50 wt% of dredged-soil, 15 wt% of bottom-ash and 35wt.% of reject-ash were mixed, then the amount of iron oxide was varied at 5 to 30 wt% with intervals of 5 wt% with $Fe_2O_3$ and $Fe_3O_4$ respectively. As molded aggregates were sintered by rapid sintering in intervals of $40^{\circ}C$ from $1060^{\circ}C$ to $1180^{\circ}C$, specific gravity and water absorption were measured. As a result, the artificial lightweight aggregate with iron oxide of 10~15 vol% showed the lowest specific gravity, and it was identified that the more iron oxide vol% increases, the more specific gravity increases because of liquid phase sintering.

Prediction of compressive strength of lightweight mortar exposed to sulfate attack

  • Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the results of experimental research, and artificial intelligence methods focused on determination of compressive strength of lightweight cement mortar with silica fume and fly ash after sulfate attack. The artificial neural network and the support vector machine were selected as artificial intelligence methods. Lightweight cement mortar mixtures containing silica fume and fly ash were prepared in this study. After specimens were cured in $20{\pm}2^{\circ}C$ waters for 28 days, the specimens were cured in different sulfate concentrations (0%, 1% $MgSO_4^{-2}$, 2% $MgSO_4^{-2}$, and 4% $MgSO_4^{-2}$ for 28, 60, 90, 120, 150, 180, 210 and 365 days. At the end of these curing periods, the compressive strengths of lightweight cement mortars were tested. The input variables for the artificial neural network and the support vector machine were selected as the amount of cement, the amount of fly ash, the amount of silica fumes, the amount of aggregates, the sulfate percentage, and the curing time. The compressive strength of the lightweight cement mortar was the output variable. The model results were compared with the experimental results. The best prediction results were obtained from the artificial neural network model with the Powell-Beale conjugate gradient backpropagation training algorithm.