• Title/Summary/Keyword: artifact reduction

Search Result 160, Processing Time 0.022 seconds

Compression Artifact Reduction for 360-degree Images using Reference-based Deformable Convolutional Neural Network

  • Kim, Hee-Jae;Kang, Je-Won;Lee, Byung-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose an efficient reference-based compression artifact reduction network for 360-degree images in an equi-rectangular projection (ERP) domain. In our insight, conventional image restoration methods cannot be applied straightforwardly to 360-degree images due to the spherical distortion. To address this problem, we propose an adaptive disparity estimator using a deformable convolution to exploit correlation among 360-degree images. With the help of the proposed convolution, the disparity estimator establishes the spatial correspondence successfully between the ERPs and extract matched textures to be used for image restoration. The experimental results demonstrate that the proposed algorithm provides reliable high-quality textures from the reference and improves the quality of the restored image as compared to the state-of-the-art single image restoration methods.

  • PDF

A Study on Accelerometer Based Motion Artifact Reduction in Photoplethysmography Signal (가속도계를 이용한 광전용적맥파의 동잡음 제거)

  • Kang, Joung-Hoon;Cho, Baek-Hwan;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.369-376
    • /
    • 2007
  • With the convergence of ubiquitous networking and medical technologies, ubiquitous healthcare(U-Healthcare) service has come in our life, which enables a patient to receive medical services at anytime and anywhere. In the u-Healthcare environment, intelligent real-time biosignal aquisition/analysis techniques are inevitable. In this study, we propose a motion artifact cancelation method in portable photoplethysmography(PPG) signal aquisition using an accelerometer and an adaptive filter. A preliminary experiment represented that the component of the pedestrian motion artifact can be found under 5Hz in the spectral analysis. Therefore, we collected PPG signals under both simulated conditions with a motor that generates circular motion with uniform velocity (from 1 to 5Hz) and a real walking condition. We then reduced the motion artifact using a recursive least square adaptive filter which takes the accelerometer output as a noise reference. The results showed that the adaptive filter can remove the motion artifact effectively and recover peak points in PPG signals, which represents our method can be useful to detect heart rate in real walking condition.

Analysis of the artifact reduction rate for the types of medical metals in CT with MAR algorithm (CT의 MAR알고리즘 적용 시 의료용 금속 물질별 인공물 감소율 분석)

  • Kim, Hyeon-ju;Yoon, Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.655-662
    • /
    • 2016
  • We investigated on the usefulness of MAR algorithm by making a comparison of the CT value between before and after applying the MAR algorithm in dual energy CT, using the various kinds of medical metals, causing the artifact to lead to the low image quality. As a result, the artifact was reduced in most cases (P<0.05); in particular, the artifact was highly reduced (P<0.05) using high density material, like alloy-stainless (reduced by 78.1%) and platinum, for example GDC coil (reduced by 76.1%). The effect of decreasing the Black hole artifact was outstanding in both the alloy-stainless and alloy-titanium (P<0.05). However, in case of GDC coil-a type platinum, white streak artifact was reduced effectively (P<0.05). Therefore, in case of patients who have medical metals inserted, we think that high-quality image information can be provided by decreasing the artifact caused by high density material through MAR algorithm in dual energy CT.

Effect of Iterative-metal Artifact Reduction (iMAR) at Tomotherapy: a Phantom Study (토모테라피에서 반복적 금속 인공물 감소 알고리즘의 유용성 평가: 팬톰 실험)

  • Daegun, Kim;Jaehong, Jung;Sungchul, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.709-718
    • /
    • 2022
  • We evaluated the effect of high-density aluminum, titanium, and steel metal inserts on computed tomography (CT) numbers and radiation treatment plans for Tomotherapy. CT images were obtained using a cylindrical TomoPhantom comprising cylindrical rods of various densities and metal inserts. Three CT image sets were evaluated for image quality as the mean CT number and standard deviation. Dose evaluation also performed. The reference values did not significantly differ between the CT image sets with the corrected metal inserts. The higher-density material exhibited the largest difference in the mean CT number and standard deviation. The conformity index at Iterative-Metal Artifact Reduction (iMAR) was approximately 20% better than that of non-iMAR. No significant target or organ at risk dose difference was observed between non-iMAR and iMAR. Therefore, iMAR is helpful for target or organ at risk delineation and for reducing uncertainty for three-dimensional conformal radiation therapy in Tomotherapy.

Evaluation of the reconstruction of image acquired from CT simulator to reduce metal artifact (Metal artifact 감소를 위한 CT simulator 영상 재구성의 유용성 평가)

  • Choi, Ji Hun;Park, Jin Hong;Choi, Byung Don;Won, Hui Su;Chang, Nam Jun;Goo, Jang Hyun;Hong, Joo Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.191-197
    • /
    • 2014
  • Purpose : This study presents the usefulness assessment of metal artifact reduction for orthopedic implants(O-MAR) to decrease metal artifacts from materials with high density when acquired CT images. Materials and Methods : By CT simulator, original CT images were acquired from Gammex and Rando phantom and those phantoms inserted with high density materials were scanned for other CT images with metal artifacts and then O-MAR was applied to those images, respectively. To evaluate CT images using Gammex phantom, 5 regions of interest(ROIs) were placed at 5 organs and 3 ROIs were set up at points affected by artifacts. The averages of standard deviation(SD) and CT numbers were compared with a plan using original image. For assessment of variations in dose of tissue around materials with high density, the volume of a cylindrical shape was designed at 3 places in images acquired from Rando phantom by Eclipse. With 6 MV, 7-fields, $15{\time}15cm2$ and 100 cGy per fraction, treatment planning was created and the mean dose were compared with a plan using original image. Results : In the test with the Gammex phantom, CT numbers had a few difference at established points and especially 3 points affected by artifacts had most of the same figures. In the case of O-MAR image, the more reduction in SD appeared at all of 8 points than non O-MAR image. In the test using the Rando Phantom, the variations in dose of tissue around high density materials had a few difference between original CT image and CT image with O-MAR. Conclusion : The CT images using O-MAR were acquired clearly at the boundary of tissue around high density materials and applying O-MAR was useful for correcting CT numbers.

Comparison of the Quality of Various Polychromatic and Monochromatic Dual-Energy CT Images with or without a Metal Artifact Reduction Algorithm to Evaluate Total Knee Arthroplasty

  • Hye Jung Choo;Sun Joo Lee;Dong Wook Kim;Yoo Jin Lee;Jin Wook Baek;Ji-yeon Han;Young Jin Heo
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1341-1351
    • /
    • 2021
  • Objective: To compare the quality of various polychromatic and monochromatic images with or without using an iterative metal artifact reduction algorithm (iMAR) obtained from a dual-energy computed tomography (CT) to evaluate total knee arthroplasty. Materials and Methods: We included 58 patients (28 male and 30 female; mean age [range], 71.4 [61-83] years) who underwent 74 knee examinations after total knee arthroplasty using dual-energy CT. CT image sets consisted of polychromatic image sets that linearly blended 80 kVp and tin-filtered 140 kVp using weighting factors of 0.4, 0, and -0.3, and monochromatic images at 130, 150, 170, and 190 keV. These image sets were obtained with and without applying iMAR, creating a total of 14 image sets. Two readers qualitatively ranked the image quality (1 [lowest quality] through 14 [highest quality]). Volumes of high- and low-density artifacts and contrast-to-noise ratios (CNRs) between the bone and fat tissue were quantitatively measured in a subset of 25 knees unaffected by metal artifacts. Results: iMAR-applied, polychromatic images using weighting factors of -0.3 and 0.0 (P-0.3i and P0.0i, respectively) showed the highest image-quality rank scores (median of 14 for both by one reader and 13 and 14, respectively, by the other reader; p < 0.001). All iMAR-applied image series showed higher rank scores than the iMAR-unapplied ones. The smallest volumes of low-density artifacts were found in P-0.3i, P0.0i, and iMAR-applied monochromatic images at 130 keV. The smallest volumes of high-density artifacts were noted in P-0.3i. The CNRs were best in polychromatic images using a weighting factor of 0.4 with or without iMAR application, followed by polychromatic images using a weighting factor of 0.0 with or without iMAR application. Conclusion: Polychromatic images combined with iMAR application, P-0.3i and P0.0i, provided better image qualities and substantial metal artifact reduction compared with other image sets.

Blocking Artifact Reduction in Block-Coded Image Using Interpolation and SAF Based on Edge Map

  • Park, Kyung-Nam;Lee, Gun-Woo;Kwon, Kee-Koo;Kim, Bong-Seok;Lee, Kuhn-Il
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1007-1010
    • /
    • 2002
  • In this paper, we present a new blocking artifact reduction algorithm using interpolation and signal adaptive filter (SAF) based on the edge map. Generally, block-based coding, such as JPEG and MPEG, is the most popular image compression method. However, for high compression it produces noticeable blocking and ringing artifacts in the decoded image. In proposed method, all the block is classified into low and high frequency blocks in block classification procedure. And edge map is obtained by using Sobel operator on decoded image. And according to the block property we applied blocking artifacts reduction algorithm. Namely, four neighbor low frequency block is participated in interpolation based on edge map. And ringing artifacts is removed by applying a signal adaptive filter around the edge using edge map in high frequency block. The computer simulation results confirmed a better performance by the proposed method in both the subjective and objective image qualities.

  • PDF

Blocking-Artifact Reduction using Projection onto Adaptive Quantization Constraint Set (적응 양자화 제한 집합으로의 투영을 이용한 블록 현상 제거)

  • 정연식;김인겸
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.79-86
    • /
    • 2003
  • A new quantization constraint set based on the theory of Projection onto Convex Set(POCS) is proposed to reduce blocking artifact appearing in block-coded images. POCS-based postprocessing for alleviating the blocking artifact consists of iterative projections onto smoothness constraint set and quantization constraint set, respectively. In general, the conventional quantization constraint set has the maximum size of range where original image data can be included, therefore over-blurring of restored image is unavoidable as iteration proceeds. The projection onto the proposed quantization constraint set can reduce blocking artifact as well as maintain the clearness of the decoded image, since it controls adaptively the size of quantization constraint set according to the DCT coefficients. Simulation results using the proposed quantization constraint set as a substitute for conventional quantization constraint set show that the blocking artifact of the decoded image can be reduced by the small number of iterations, and we know that the postprocessed image maintains the distinction of the decoded image.

A Study on the Adaptive Technique for Artifact Cancelling in Electroencephalogram Analysis System (뇌파 분석 시스템에서의 Artifact 제거를 위한 적응 기법에 관한 연구)

  • 유선국;김기만;남기현
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.389-396
    • /
    • 1997
  • Several types of electrical artifact seen on electroencephalogram( EEG) records are described. Those are the EOG and the PVC roller pump noise, and so on. An adaptive digital filtering of the electroencephalogram( EEG) is a successful way of suppressing mains interference, but it affects some of the frequency components of the signal, whore artifacts may not be acceptable in some cafes of automatic EEG processing. Thus we studied the method for cancelling these artifacts. This proposed method does not use the reference channel, and is realized by connecting the linear predictor and the fixed FIR filter for the EOG artifact, and by cascading the linear predictor and the noise canceller for the pump artifact. The simulation results illustrate the performances of the proposed method in terms of the capability of interferences suppression. In the results we obtained about 20 dB noise reduction.

  • PDF

Reduction of Artifacts in Magnetic Resonance Imaging with Diamagnetic Substance (반자성 물질을 이용한 자기공명영상검사에서의 인공물 감소)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.581-588
    • /
    • 2019
  • MRI is superior when contrasted to help the organization generate artifacts resolution, but also affect the diagnosis and create a image that can not be read. Metal is inserted into the tooth, it is necessary to often be inhibited in imaging by causing the geometric distortion due to the majority and if the difference between the magnetic susceptibility of a ferromagnetic material or paramagnetic reducing them. The purpose of this study is to conduct a metal artefact in accordance with the analysis using a diamagnetic material. The magnetic material include a wire for the orthodontic bracket and a stainless steel was used as a diamagnetic material was used copper, zinc, bismuth. Testing equipment is sequenced using 1.5T, 3T was used was measured using a SE, TSE, GE, EPI. A self-produced phantom material was used for agarose gel (10%) to a uniform signal artifacts causing materials are stainless steel were tested by placing in the center of the phantom and cover inspection of the positive cube diamagnetic material of 10mm each length.After a measurement artefact artifact zone settings area was calculated using the Wand tool After setting the Low Threshold value of 10 in the image obtained by subtracting images, including magnetic material from a pure tool phantom images using Image J. Metal artifacts occur in stainless steel metal artifact reduction was greatest in the image with the bismuth diamagnetic materials of copper and zinc is slightly reduced, but the difference in degree will not greater. The reason for this is thought to be due to hayeotgi offset most of the susceptibility in bismuth diamagnetic susceptibility of most small ferromagnetic. Most came with less artifacts in image of bismuth in both 1.5T and 3T. Sequence-specific artifact reduction was most reduced artifacts from the TSE 1.5T 3T was reduced in the most artifacts from SE. Signal-to-noise ratio was the lowest SNR is low, appears in the implant, the 1.5T was the Implant + Bi Cu and Zn showed similar results to each other. Therefore, the results of artifacts variation of diamagnetic material, magnetic susceptibility (${\chi}$) is the most this shows the reduced aspect lower than the implant artificial metal artifacts criteria in the video using low bismuth susceptibility to low material the more metal artifacts It was found that the decrease. Therefore, based on the study on the increase, the metal artifacts reduction for the whole, as well as dental prosthesis future orthodontic materials in a way that can even reduce the artifact does not appear which has been pointed out as a disadvantage of the solutions of conventional metal artifact It is considered to be material.