• Title/Summary/Keyword: artifact

Search Result 1,003, Processing Time 0.023 seconds

MRI Artifacts

  • 최순섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 1997
  • MRI의 artifact는 대부분 신호의 부호화 방향에 따라서 방향성을 가지는데, 이를 요약해보면, 위상부호화 방향의 artifact에는 motion artifact, flow artifact, RF noise등이 있고, 주파수 부호화 방향의 artfact는 susceptibility artfact, chemical shift artifact, central line artifact등이 있으며, 양방향 모두 생길수 있는 것은 Aliasing artifact와 Gibb's phenomenon이고, 전체적으로 영샹의 질을 떨어뜨리는 것은 susceptibility artifact, Eddy current, cross talk등이 있다. 이런 artifact는 대부분은 MRI 자체의 물리적 특성에 다소간 기인하므로, artifact가 없는 양호한 영상을 얻기 위해서는 MRI의 설치 단계부터 관심이 필요하고, MRI의 기본원리와 다양한 artifact에 대해 이해함으로써, 제거 가능한 artifact는 제거하여 양질의 영상을 만들고 판독시의 오류를 피할 수 있도록 해야할 것이다.

  • PDF

Cause and Solution of an Artifact Generation by Parameter in Computed Radiography System (Computed Radiography 영상에서 Parameter에 의한 Artifact 원인과 해결방안)

  • Dong, Kyung-Rae;Choi, Jun-Gu;Hong, Seong-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.145-155
    • /
    • 2009
  • There is a great deal of merit in CR system but artifact not produced in old system of film or screen newly is created. we studied 3 cases of artifact with CR system in one hospital, Gwangju. In the first case of the delay time and density, As the time was delayed, the density of the artifact was increased up to 67 percent in the natural radiation. The Second, Fading of the artifact decreased 33 percent in the rate of the emission after 10 hours, and the more the time was delayed, the less the quality of image was deteriorated. Third, Artifact was produced by the collimation when the radiologic technologist was performed, and by the Guiding plate and Suction cup when the radiation equipment was done. Therefore, when health care provider have to understand the artifact exactly and check regularly, the quality of the picture and the satisfaction of the medical examination is increased.

Metal artifact SUV estimation by using attenuation correction image and non attenuation correction image in PET-CT (PET-CT에서 감쇠보정 영상과 비감쇠보정 영상을 통한 Metal Artifact 보정에 대한 고찰)

  • Kim, June;Kim, Jae-II;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • Purpose Because of many advantages, PET-CT Scanners generally use CT Data for attenuation correction. By using CT based attenuation correction, we can get anatomical information, reduce scan time and make more accurate correction of attenuation. However in case metal artifact occurred during CT scan, CT-based attenuation correction can induce artifacts and quantitative errors that can affect the PET images. Therefore this study infers true SUV of metal artifact region from attenuation corrected image count -to- non attenuation corrected image count ratio. Materials and Methods Micro phantom inserted $^{18}F-FDG$ 4mCi was used for phantom test and Biograph mCT S(40) is used for medical test equipment. We generated metal artifact in micro phantom by using metal. Then we acquired both metal artifact region of correction factor and non metal artifact region of correction factor by using attenuation correction image count -to- non attenuation correction image count ratio. In case of clinical image, we reconstructed both attenuation corrected images and non attenuation corrected images of 10 normal patient($66{\pm}15age$) who examined PET-CT scan in SNUH. After that, we standardize several organs of correction factor by using attenuation corrected image count -to- non attenuation corrected count ratio. Then we figured out metal artifact region of correction factor by using metal artifact region of attenuation corrected image count -to- non attenuation corrected count ratio And we compared standard organs correction factor with metal artifact region correction factor. Results according to phantom test results, metal artifact induce overestimation of correction factor so metal artifact region of correction factors are 12% bigger than the non metal artifact region of correction factors. in case of clinical test, correction factor of organs with high CT number(>1000) is $8{\pm}0.5%$, correction factor of organs with CT number similar to soft tissue is $6{\pm}2%$ and correction factor of organs with low CT number(-100>) is $3{\pm}1%$. Also metal artifact correction factors are 20% bigger than soft tissue correction factors which didn't happened metal artifact. Conclusion metal artifact lead to overestimation of attenuation coefficient. because of that, SUV of metal artifact region is overestimated. Thus for more accurate quantitative evaluation, using attenuation correction image count -to-non attenuation correction image count ratio is one of the methods to reduce metal artifact affect.

  • PDF

Artifacts in Digital Radiography (디지털 방사선 시스템에서 발생하는 Artifact)

  • Min, Jung-Whan;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.375-381
    • /
    • 2015
  • Digital Radiography is a big part of diagnostic radiology. Because uncorrected digital radiography image supported false effect of Patient's health care. We must be manage the correct digital radiography image. Thus, the artifact images can have effect to make a wrong diagnosis. We report types of occurrence by analyzing the artifacts that occurs in digital radiography system. We had collected the artifacts occurred in digital radiography system of general hospital from 2007 to 2014. The collected data had analyzed and then had categorize as the occurred causes. The artifacts could be categorized by hardware artifacts, software artifacts, operating errors, system artifacts, and others. Hardware artifact from a Ghost artifact that is caused by lag effect occurred most frequently. The others cases are the artifacts caused by RF noise and foreign body in equipments. Software artifacts are many different types of reasons. The uncorrected processing artifacts and the image processing error artifacts occurred most frequently. Exposure data recognize (EDR) error artifacts, the processing error of commissural line, and etc., the software artifacts were caused by various reasons. Operating artifacts were caused when the user didn't have the full understanding of the digital medical image system. System artifacts had appeared the error due to DICOM header information and the compression algorithm. The obvious artifacts should be re-examined, and it could result in increasing the exposure dose of the patient. The unclear artifact leads to a wrong diagnosis and added examination. The ability to correctly determine artifact are required. We have to reduce the artifact occurrences by understanding its characteristic and providing sustainable education as well as the maintenance of the equipments.

Spin MR Imaging : Pitfalls and Artifacts

  • 이영준
    • Proceedings of the KSMRM Conference
    • /
    • 1999.04a
    • /
    • pp.130-136
    • /
    • 1999
  • 척추의 MR촬영은 두부 다음으로 흔하게 시행되고 있는데, 척추의 해부학 적 구조물들은 일반적으로 널리 알려져 있고 이해하기가 쉽기 때문에 척추의 MR영상을 분석하는데 큰 어려움이 없을 수 있다. 관절부위를 포함한 근골격계 MR영상에서는 MR ar디facts가 병변을 관찰하는데 장애를 초래하여 위양성 혹은 위음성의 결과를 나타낼 수 있기 때문에 빈번히 언급되고 있다. 척추 MR영상을 판독하는 데는 다른 근골격계 영상에 비하여 artifact의 빈도 나 정도는 작지만, 의외로 많은 pitfall이나 ar디fact들이 관찰된다. 척추 MR 영상의 pitall과 artifact에 대한 정확한 인지와 이해가 필요한 이유는 MR영상에서 병변이 관찰되지 않거나 정상조직이 병변처럼 관찰될 수 있고, 또 병변의 특정을 잘못 판단할 수 있기 때문에 artifact를 교정하거나 최소화시키고, 방지할 수 있는 방법들을 사용하여 더욱 정확한 척추 MR영상의 결과를 얻는데 있다. 지면 관계상 모든 종류의 MR artifact를 언급하기 보다는 척추 MRI를 판독하면서 병변과 혼동을 주는 MR artifacts를 먼저 살펴보고, 진단적 오류를 범할 수 있는 pitfall들에 대하여 알아보도록 하겠다. 여기에서는 편의상 MR 촬영과 관계된 artifact들만을 artifact라고 하고 MR artifact와 직접적으로 연관이 없으면서 위양성이나 위음성을 초래할 수 있는 pitfall이나 variant를 pitfall로 묵어서 설명하겠다.

  • PDF

Evaluating applicability of metal artifact reduction algorithm for head & neck radiation treatment planning CT (Metal artifact reduction algorithm의 두경부 CT에 대한 적용 가능성 평가)

  • Son, Sang Jun;Park, Jang Pil;Kim, Min Jeong;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • Purpose : The purpose of this study is evaluation for the applicability of O-MAR(Metal artifact Reduction for Orthopedic Implants)(ver. 3.6.0, Philips, Netherlands) in head & neck radiation treatment planning CT with metal artifact created by dental implant. Materials and Methods : All of the in this study's CT images were scanned by Brilliance Big Bore CT(Philips, Netherlands) at 120kVp, 2mm sliced and Metal artifact reduced by O-MAR. To compare the original and reconstructed CT images worked on RTPS(Eclipse ver 10.0.42, Varian, USA). In order to test the basic performance of the O-MAR, The phantom was made to create metal artifact by dental implant and other phantoms used for without artifact images. To measure a difference of HU in with artifact images and without artifact images, homogeneous phantom and inhomogeneous phantoms were used with cerrobend rods. Each of images were compared a difference of HU in ROIs. And also, 1 case of patient's original CT image applied O-MAR and density corrected CT were evaluated for dose distributions with SNC Patient(Sun Nuclear Co., USA). Results : In cases of head&neck phantom, the difference of dose distibution is appeared 99.8% gamma passing rate(criteria 2 mm / 2%) between original and CT images applied O-MAR. And 98.5% appeared in patient case, among original CT, O-MAR and density corrected CT. The difference of total dose distribution is less than 2% that appeared both phantom and patient case study. Though the dose deviations are little, there are still matters to discuss that the dose deviations are concentrated so locally. In this study, The quality of all images applied O-MAR was improved. Unexpectedly, Increase of max. HU was founded in air cavity of the O-MAR images compare to cavity of the original images and wrong corrections were appeared, too. Conclusion : The result of study assuming restrained case of O-MAR adapted to near skin and low density area, it appeared image distortion and artifact correction simultaneously. In O-MAR CT, air cavity area even turned tissue HU by wrong correction was founded, too. Consequentially, It seems O-MAR algorithm is not perfect to distinguish air cavity and photon starvation artifact. Nevertheless, the differences of HU and dose distribution are not a huge that is not suitable for clinical use. And there are more advantages in clinic for improved quality of CT images and DRRs, precision of contouring OARs or tumors and correcting artifact area. So original and O-MAR CT must be used together in clinic for more accurate treatment plan.

Usefulness of Twinkling Artifacts in Color Doppler Ultrasonography (컬러 도플러 초음파에서 Twinkling artifacts의 유용성)

  • Sim, Hyun-Sun;Kwon, Kyung-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.10
    • /
    • pp.291-298
    • /
    • 2016
  • The aim of the study was to investigate the diagnostic value of the color Doppler twinkling artifact in disease of urinary system. The intensity of twinkling artifact(TA) with color Doppler was classified into 3 levels, 0(non-TA) to 3(distinct TA). In the in vitro study, acorn jelly with various materials on top was examined using color Doppler at B-mode sonography in a water bath for TA. 31 patients with diagnosis of urinary calculi(renal stones 16, urinary stones 15) based on B-mode sonography were studied in vivo for TA. The materials with rough surfaces such as salt, screw and cubics at B-mode sonography with color Doppler contributed to causing TA. At B-mode sonography without color Doppler 37% of renal stones and 60% of ureter stones were detected. but at B-mode sonography with color Doppler TA was demonstrated for all cases. Superficial roughness of materials affected occurrence of TA at B-mode sonography with color Doppler. Therefore, TA at B-mode sonography without color Doppler could play a role in confident diagnosis of the disease of urinary system.

Quantitative Evaluation of CT Artifact Elimination with various Cut-off Frequency of Hann Filter (Hann 필터의 Cut-off 주파수 변화에 따른 CT 영상의 Artifact 제거효과에 대한 정량적 평가)

  • Kang, Bo-Sun
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • In the computerized tomography(CT), various filters are using in the reconstruction algorithm to reduce or eliminate the artifacts which are intrinsically induced by the imperfection of mathematical methods for reconstruction, lack of real informations about anatomic structures in the projection image, errors in data acquisition and so on. Hann filter was used to evaluate the filter effects on the elimination of reconstruction artifact in the CT image. The quantitative study was done by changing cut-off frequency of Hann filter from 0.1 to 0.9 with frequency increasement by 0.2. NPS analysis was fulfilled for the quantitative evaluation of filter effect.

  • PDF

The Automatic Collection and Analysis System of Cloud Artifact (클라우드 아티팩트 자동 수집 및 분석 시스템)

  • Kim, Mingyu;Jeong, Doowon;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1377-1383
    • /
    • 2015
  • As the cloud services users' increase, there are important files created by individual in cloud storage. Thus, investigation of cloud artifact should be conducted. There are two methods of analyzing cloud service, one is that investigates cloud server provider (CSP), and another is that investigates client. In this paper, we presents an automated framework to detect the altered artifact and developes a tool that detects the cloud artifact. We also developed Cloud Artifact Tool that can investigate client computer. Cloud Artifact Tool provides feature of collection and analysis for the services such as Google Drive, Dropbox, Evernote, NDrive, DaumCloud, Ucloud, LG Cloud, T Cloud and iCloud.

Evaluation of using Gantry Tilt Scan to Head & Neck of Patients during Radiation Therapy for Reduction of Metal Artifact (Head & Neck 환자의 방사선 치료시 Metal Artifact의 감소를 위한 Gantry Tilt Scan의 유용성 평가)

  • Lee, Chung-Hwan;Yun, In-Ha;Hong, Dong-Gi;Back, Geum-Mun;Kwon, Gyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.85-95
    • /
    • 2010
  • Purpose: The degradation of an image quality and error of the beam dose calculation can be caused because the metal artifact is generated during the CT simulation of head and neck patient. The usability of the gantry tilt scan for reducing the metal artifact tries to be appraised. Materials and Methods: The inferior $20^{\circ}$ gantry tilt scan was made in order to reduce the metal artifact and $0^{\circ}$ reconstruction image was acquired. The AAPM CT performance Phantom was used in order to compare the CT number of the reconstructed image and Original image. the difference of volume was compared by using the acrylic phantom. The homogeneity of the CT number was evaluated the Intensity volume Histogram (IVH) as in order to evaluate an influence by the metal artifact. A dose was evaluated as the Dose Volume Histogram (DVH). Results: in the comparison of the CT number and volume, the difference showed up less than 0.5%. As to the comparison of IVH, in the gantry tilt scan, influence by an artifact was reduced and the homogeneity of the CT number was improved. The comparison of DVH result reduced the mean dose error of the both sides parotid 0.2~6%. Conclusion: In the Head & Neck radiation therapy, It is difficult and to distinguish tumor and normal tissue and the error of dose is generated by the metal artifact. The delineation of the exact organization was possible if the Gantry tilt scan was used. The CT number homogeneity was improved and the error of dose could be reduced. The Gantry tilt scan confirmed in the Head & Neck radiation therapy to be very useful in the exact radiation therapy.

  • PDF