• Title/Summary/Keyword: arsenic contamination

Search Result 161, Processing Time 0.027 seconds

Evaluation of Growth Characteristics and Heavy Metal Absorption Capacity of Festuca ovina var. coreana in Heavy Metal-Treated Soils (중금속 처리한 토양에서 참김의털의 생육특성과 중금속 흡수능력 평가)

  • Keum Chul, Yang
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.259-268
    • /
    • 2022
  • In this study, seeds of Festuca ovina var. coreana growing in waste coal landfills exposed to heavy metal contamination for a long time were collected, and growth characteristics and heavy metal accumulation capacity were evaluated through greenhouse cultivation experiments with germinated seedlings, and was conducted for the applicability of phytoremediation technology. Concentration gradients of arsenic-treated artificial soil were 25, 62.5, 125, and 250 mg/kg, respectively, lead concentrations were 200, 500, 1000, and 2000 mg/kg, and cadmium concentrations were 15, 30, 60, and 100 mg/kg, respectively In the arsenic, lead, and cadmium-treated experimental groups, the number of leaves of F. ovina var. coreana decreased in all compared to the control group except for the lead-treated groups (200, 500, and 1000 mg/kg). Length growth of the shoot part was increased in all of the arsenic treatment groups compared to the control group, but decreased in all of the root parts. In the 1000 and 2000 mg/kg lead treatment groups, lengths increased compared to the control group, but in the other treatments, they were shorter than the control group. In the case of the cadmium treatment group, all of the shoot parts were increased compared to the control group, and all of the root parts were decreased. In the case of arsenic treatment, the biomass was decreased at all parts and all concentrations compared to the control group. The 200, 500, and 1000 mg/kg lead treatments showed larger biomass than the control group in both shoot and root parts. In the cadmium treatment group, the biomass of both shoot and root parts decreased compared to the control group. As the concentration of heavy metal treatment increased, both the number of leaves and the biomass by plant parts tended to decrease, and the length growth of the shoot part tended to increase slightly, but the root part tended to decrease slightly. The arsenic accumulation concentrations of the shoot and root parts of the 62.5 mg/kg arsenic treatment area were 9.4 mg/kg and 253.3 mg/kg, respectively. While the shoot part of the 250 mg/kg arsenic treatment area withered away, the arsenic accumulation concentration in the root part was analyzed to be 859.1 mg/kg, In the 2,000 mg/kg lead treatment area, the shoot and root parts accumulated 10,308.1 and 11,012.0 mg/kg, which were 1.1 times higher than the root parts. At 100 mg/kg cadmium treatment, the shoot and root parts were 176.0 and 287.2 mg/kg, and the root part accumulated 1.6 times higher than the shoot part. As a result of tolerance evaluation of F. ovina var. coreana, multi-tolerance to three heavy metals was confirmed by maintaining growth without dying in all treatment groups of arsenic, lead, and cadmium. Plant extraction (phytoextraction) of F. ovina var. coreana was verified as a species that can be applied up to 2,000 mg/kg of soil lead contamination.

Metal Exposure Through Consumption of Herbal Medicine, and Estimation of Health Risk Among Korean Population (한약재 복용으로 인한 금속 섭취량 추정 및 위해성 평가 연구)

  • Park Hae-Mo;Choi Kyung-Ho;Jung Jin-Yong;Lee Sun-Dong
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.2 s.89
    • /
    • pp.186-191
    • /
    • 2006
  • Metal contamination of medicinal herbs is of growing concern because of their potential adverse health effects. In this study, metal exposures were estimated and their potential health risks were preliminarily evaluated using available data including metal contamination levels and consumption estimates of herbal medicine in Korea. Consumption and contamination data of 34 medicinal herbs abundantly used in Oriental medicine in Korea were used in this study. Lead, mercury, arsenic, cadmium, cobalt, and chrome were identified as contaminants of potential health concerns. Even based on a conservative exposure scenario, i.e., consuming 5 times more herbal medicine with 95th percentile contamination levels, health risks associated with herbal medicine consumption were estimated to be minuscule. Herbal consumption was 0.3% of the provisional tolerable daily intake levels recommended by Joint Expert Committee on Food Additives (JECFA) of WHO/FAO. However, it should be noted that there are several important assumptions and uncertainties associated with this evaluation: This study was conducted for only 34 types of medicinal herbs of which consumption and metal contamination data were available. In addition, there are no reliable herbal medicine consumption data among Korean population. The pattern and amount of herbal (medicine) consumption in Korea need to be investigated in order to conduct more refined risk assessment associated with metal contamination in medicinal herbs.

Chemical Speciation of Arsenic in the Water System from Some Abandoned Au-Ag Mines in Korea (국내 폐금은광산 주변 수계내의 As의 화학적 특성)

  • 이지민;이진수;전효택
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.481-490
    • /
    • 2003
  • The objectives of this study are (1) to determine the extent and degree of As contamination of the water and sediments influenced by mining activity of the abandoned Au-Ag mines, (2) to examine As speciation In contaminated water, (3) to monitor variation of As contamination in water system throughout the dry and wet seasons, and (4) to investigate the As chemical form in the sediments through the sequential extraction analyses. Natural water(mine water, surface water and groundwater) and sediments were collected in six abandoned Au-Ag mine(Au-bearing quartz veins) areas. The contamination level of As in mine water of the Dongil(524${\mu}m$/L) is more higher than the tolerance level(500 ${\mu}m$/L) for waste water of mine area in Korea. Elevated levels of As in stream water were also found in the Dongil(range of 63.7∼117.6 ${\mu}m$/L.) and Gubong(range of 56.1∼62.9 ${\mu}m$/L) mine areas. Arsenic contamination levels in groundwater used by drinking water were more significant in the Dongil(11.3∼63.5 ${\mu}m$/L), Okdong(0.2∼68.9 ${\mu}m$/L) and Gubong(2.0∼101.0${\mu}m$/L) mine areas. Arsenate[As(V), $H_2AsO_4^-$] is more dominant than arsenite[As(III), $H_3AsO_3$] in water system of the most mine areas. The concentration ratios of As(III) to As(total), however, extend to the 95% in stream water of the Okdong mine area and 70∼82% in groundwater of the Okdong and Dongjung mine areas. As a study of seasonal variation in the water system, relatively high levels of As from the dongil mine area were found in April rather than in September. Sequential extraction analysis showed that As was predominantly present as coprecipitated with Fe hydroxides from sediment samples of the Dongjung and Gubong mine(35.9∼40.5%), which indicates its possibility of re-extraction and inducing elevated contamination of As in the reductive condition. In sediments from the Dongil, Okdong and Hwachon mine area, high percentage(55.2∼83.4%) of As sulfide form was found.

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine (폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사)

  • Han-Gyum Kim;Bum-Jun Kim;Myoung-Soo Ko
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.717-726
    • /
    • 2022
  • This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Prediction of Arsenic Uptake by Rice in the Paddy Fields Vulnerable to Arsenic Contamination

  • Lee, Seul;Kang, Dae-Won;Kim, Hyuck-Soo;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • There is an increasing concern over arsenic (As) contamination in rice. This study was conducted to develope a prediction model for As uptake by rice based on the physico-chemical properties of soil. Soil and brown rice samples were collected from 46 sites in paddy fields near three different areas of closed mines and industrial complexes. Total As concentration, soil pH, Al oxide, available phosphorus (avail-P), organic matter (OM) content, and clay content in the soil samples were determined. Also, 1.0 N HCl, 1.0 M $NH_4NO_3$, 0.01 M $Ca(NO_3)_2$, and Mehlich 3 extractable-As in the soils were measured as phytoavailable As concentration in soil. Total As concentration in brown rice samples was also determined. Relationships among As concentrations in brown rice, total As concentrations in soils, and selected soil properties were as follows: As concentration in brown rice was negatively correlated with soil pH value, where as it was positively correlated with Al oxide concentration, avail-P concentration, and OM content in soil. In addition, the concentration of As in brown rice was statistically correlated only with 1.0 N HCl-extractable As in soil. Also, using multiple stepwise regression analysis, a modelling equation was created to predict As concentration in brown rice as affected by selected soil properties including soil As concentration. Prediction of As uptake by rice was delineated by the model [As in brown rice = 0.352 + $0.00109^*$ HCl extractable As in soil + $0.00002^*$ Al oxide + $0.0097^*$ OM + $0.00061^*$ avail-P - $0.0332^*$ soil pH] ($R=0.714^{***}$). The concentrations of As in brown rice estimated by the modelling equation were statistically acceptable because normalized mean error (NME) and normalized root mean square error (NRMSE) values were -0.055 and 0.2229, respectively, when compared with measured As concentration in the plant.

Efficacy of Three Different Plant Species for Arsenic Phytoextraction from Hydroponic System

  • Tiwari, Sarita;Sarangi, Bijaya Ketan;Pandey, Ram Avatar
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.145-149
    • /
    • 2014
  • Arsenic (As) is one of the heavy metals which causes acute bio-toxicity even at low concentration and has disastrous effect on environment. In some countries, As contamination has become alarming and increasing day by day as consequences of unsustainable management practices. Many existing physical, chemical and biological processes for As removal from water system are not feasible due to techno-economic limitations. The present study highlights the scope of biological strategy for As removal through phytoextraction. Arsenic uptake and accumulation in the biomass of three plant species and their As tolerance abilities have been investigated to develop an efficient phytoextraction system in combination of these plant species. Three non-crop plant species, Pteris vittata; Mimosa pudica, and Eichhornia crassipus were treated with 0-200 mg/L As in liquid nutrient solution for 14 days. P. vittata accumulated total 9,082.2 mg (8,223 mg in fronds) As/kg biomass and Eichhornia total 6,969 mg (4,517 mg in fronds)/kg biomass at 200 mg/L As concentration, respectively. Bioaccumulation factor (BF) and translocation factor (TF) were estimated to differentiate between excluders, accumulators and accumulation in above ground biomass. Pteris and Eichhornia have highest BF (67 and 17) and TF (64 and 3), respectively. In contrast, Mimosa accumulated up to 174 mg As/kg plant biomass which is low in comparison with other two plants, and both BF and TF were ${\leq}1$. This study reveals that Pteris and Eichhornia are As hyperaccumulator, and potential candidates for As removal from water system.

Distribution of Organic and Inorganic Arsenic Species in Groundwater and Surface Water Around the Ulsan Mine (울산광산 주변지역 수계에서 유기 및 무기 비소 종 분포)

  • Kim, Youn-Tae;Woo, Nam-Chil;Yoon, Hye-On;Yoon, Cheol-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.689-697
    • /
    • 2006
  • Distribution and speciation of arsenic in water resources was investigated in the Ulsan mine area. In 62% of uoundwater samples from the mine area, total As concentrations exceeded 0.05 mg/l, the Korean Drinking Water Standard. As(V) was the major type in groundwater with minor As(III). Arsenic species appeared to be in transition stages following redox changes after exposure to the air through the monitoring wells. In areas around the mine, the mine and Cheongog spring appeared to be the sources of arsenic contamination of water resources. The spring showed 0.345 mg/1-As, as much as seven times of the Korean standard. Groundwater and stream samples showed As-concentrations greater than 0.05 mg/l in 30% and 33% samples, respectively, and 60 and 67% of samples exceeded 0.01 mg/l of WHO guideline, respectively. Again, As(V) was a dominant species, however, several samples had As(III) in appreciable levels. In one stream sample, organic species including DMA and AsB were detected in low levels, probably resulted from transformation or related biogeochemical processes.

Geochemical and Mineralogical Characterization of Arsenic-Contaminated Soil at Chonam Gold Mine, Gwangyang (광양 초남 금 광산 비소오염 토양의 지화학적 및 광물학적 특성)

  • Kong, Mi-Hye;Kim, Yu-Mi;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.203-215
    • /
    • 2011
  • Geochemical and mineralogical properties of a contamited soil should be taken into account to decide a remediation strategy for a given contaminant because development and optimization of soil remedial technologies are based on geochemical and mineralogical separation techniques. The objective of this study was to investigate the geochemical and mineralogical characteristics of arsenic-contaminated soils. The arsenic-contaminated soil samples were obtained from Chonam gold mine, Gwangyang, Chonnam, Particle size analysis, sequential extraction, and mineralogical analyses were used to characterize geochemical and mineralogical characteristics of the As-contaminated soils. Particle size analyses of the As-contaminated soils showed the soils contained 17-36% sand, 25-54% silt, 9-28% clay and the soil texture were sandy loam, loam, and silt loam. The soil pH ranged from 4.5 to 6.6. The amount of arsenic concentrations from the sequential soil leaching is mainly associated with iron oxides (1 to 75%) and residuals (12 to 91%). Major minerals of sand and silt fractions in the soils were feldspar, kaolinite, mica, and quartz and minor mineral of which is an iron oxide. Major minerals of clay fraction were composed of illite, kaolinite, quartz, and vermiculite. And minor minerals are iron oxide and rutile. The geochemical and mineralogical analyses indicated the arsenic is adsorbed or coprecipitated with iron oxides or phyllosilicate minerals. The results may provide understanding of geochemical and mineralogical characteristics for the site remediation of arsenic-contaminated soils.

A Study on the Distributions of Heavy Metal Concentration in a Soil near Abandoned Mine (폐광산 주변 토양의 중금속 농도 분포에 관한 연구)

  • 양천회;고장석
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.186-191
    • /
    • 1998
  • This study was investigated the distributions of heavy metal concentration in a soil near abandoned mine in Chung thong Nam Do. The abandoned mines were Gubong gold mine and Sinsung coal mine. The results were as follows : 1) The concentration of As and Pb in Gubong mine were 309.2mg/kg and 1163.5mg/kg, that is exceeded the countermeasure criteria. Cadmium concentration was 14.70mg/kg, that is exceeded anxiety criteria. But all items in Sinsung coal mine was detected below criteria. 2) The heavy metals contamination of riverbed soil by gold mine showed higher than coal mine. 3) The heavy metals contamination in the vicinal paddy and dry field soil area was higher than other mine. Arsenic concentration was 29.29mg/kg, that is exceeded the anxiety criteria as 10.22mg/kg.

  • PDF