• Title/Summary/Keyword: arsenic compounds

Search Result 60, Processing Time 0.028 seconds

Assessing Heavy Metals for Estrogenicity Using a Combination of In vitro and In vivo Assays (In vitro 및 In vivo Assay를 통한 중금속의 에스트로겐성 평가)

  • Park, Chul;Kim, So-Jung;Shin, Wan-Chul;Kim, Hae-Gyoung;Choe, Suck-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1486-1491
    • /
    • 2004
  • The estrogenicities of six heavy metal compounds, which contaminate frequently in foods, were assayed using a combination of in vitro and in vivo assays. The assays were 1) estrogen receptor dependent transcriptional expression assay, 2) E-screen assay and, 3) the uterotropic assay in mice. The chemicals studied were 17$\beta$ -estradiol, diethylstilbestrol (DES), arsenic oxide, bis(tri-n-butyltin), cadmium chloride, chromium chloride, lead acetate, and mercuric chloride. Using the estrogen receptor dependent transcriptional expression assay, the following estrogenicity ranking was measured: bis(tri-n-butyltin) > cadmium chloride > chromium chloride >> mercuric chloride >lead acetate = arsenic oxide. Using E-screen test, the following estrogenicity ranking was measured: bis(tri-n-butyltin) > cadmium chloride > chromium chloride >> mercuric chloride > lead acetate = arsenic oxide. Results from the uterotropic assay showed that bis(tri-n-butyltin), cadmium chloride, chromium chloride caused an increase in uterine wet weight, while lead acetate, mercuric chloride, and arsenic oxide failed to do so. Bis(tri-n-butyltin), cadmium chloride and chromium chloride showed the highest estrogenicity in three assay systems. Recent studies suggesting that bis(tri-n-butyltin), cadmium chloride have estrogenicities are compatible with the present finding. Furthermore, our study is suggesting that chromium chloride may be estrogenic. The results demonstrate that this three level-assay combination (transcriptional activation, cell proliferation, and an in vivo effect in an estrogen-responsive tissue) could serve as a useful method to assess the estrogenicity of heavy metals.

Efficiency of Apatite and Limestone in Removing Arsenic from Acid Rock Drainage at the Goro Abandoned Mine (인회석 및 석회석을 이용한 고로폐광산 ARD 내의 비소 저감효율 연구)

  • Park, Myung-Ho;Lee, Young-Woo;Hur, Yon-Kang;Park, Hae-Cheol;Sa, Sung-Oh;Choi, Jung-Chan
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2011
  • An active apatite drainage system has been developed at the Goro abandoned mine, comprising a grit cell, a reaction cell, and a precipitation pond. Leachate from an abandoned adit and tailing ponds is collected in a pipeline and is transported to the apatite drainage system under the influence of the hydraulic gradient. The results of a laboratory experiment performed in 2004 indicate that the reaction cell requires 38.8 ton/year of apatite and that precipitate will have to be removed from the precipitation pond every 3 months. The purpose of this study is to evaluate a laboratory test on the efficiency of limestone and apatite in removing arsenic from ARD (acid rock drainage), and to evaluate the suitability of materials for use as a precipitant for the leachate treatment disposal system. The laboratory tests show that the arsenic removal ratios of limestone and apatite are 67.4%-98.3%, and the arsenic removal ratio of apatite is inversely proportional to its grain size. The arsenic compounds are assumed to be Johnbaumnite and Ca-arsenic hydrate. Therefore, apatite and phosphorous limestone can be used as a precipitant for the removal of arsenic, although it is difficult to remove arsenic from ARD when it occurs in low concentrations.

Arsenic Speciation and Risk Assesment of Hijiki (Hizikia fusiforme) by HPLC-ICP-MS (HPLC-ICP-MS를 이용한 톳의 비소 화학종 분석 및 위해성 평가)

  • Ryu, Keun-Young;Shim, Sung-Lye;Hwang, In-Min;Jung, Min-Seok;Jun, Sam-Nyeo;Seo, Hye-Young;Park, Jong-Seok;Kim, Hee-Yeon;Om, Ae-Sun;Park, Kyung-Su;Kim, Kyong-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • This study investigated arsenic speciation and risk assesment in 30 samples of hijiki purchased from local market in 10 Korean cities. The mean arsenic concentration of the hijiki samples was 45.65 mg/kg (dryness; moisture content of 91.1${\pm}$1.6%), and the major arsenic compound was arsenate [As(V)]. The concentrations of As(V) and As(III), as inorganic arsenic compounds, were detected to be 40.36 mg/kg and 0.37 mg/kg, respectively, and made up 88.6% (40.46 mg/kg) of the arsenic in the hijiki. Among the samples, the highest inorganic arsenic concentration was identified at 9.19 mg/kg (wet), and for an adult with a body weight of 60 kg was within an acceptable level as 0.7% (6.43 mg/60 kg/week) when compared with the provisional tolerable weekly intake (PTWI) (900 mg/60 kg/week), and would be considered safe with respect to health-hazardous effects.

Risk Analysis of Inorganic Arsenic in Foods (식품 중 무기비소의 위해 분석)

  • Yang, Seung-Hyun;Park, Ji-Su;Cho, Min-Ja;Choi, Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.4
    • /
    • pp.227-249
    • /
    • 2016
  • Arsenic and its compounds vary in their toxicity according to the chemical forms. Inorganic arsenic is more toxic and known as carcinogen. The provisional tolerable weekly intake (PTWI) of $15{\mu}g/kg$ b.w./week established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has been withdrawn, while the EFSA panel suggested $BMDL_{0.1}$ $0.3{\sim}8{\mu}g/kg\;b.w./day$ for cancers of the lung, skin and bladder, as well as skin lesions. Rice, seaweed and beverages are known as food being rich in inorganic arsenic. As(III) is the major form of inorganic arsenic in rice and anaerobic paddy soils, while most of inorganic arsenic in seaweed is present as As(V). The inorganic arsenic in food was extracted with solvent such as distilled water, methanol, nitric acid and so on in heat-assisted condition or at room temperature. Arsenic speciation analysis was based on ion-exchange chromatography and high-performance liquid chromatography equipped with atomic absorption spectrometry and inductively coupled plasma mass spectrometry. However, there has been no harmonized and standardized method for inorganic arsenic analysis internationally. The inorganic arsenic exposure from food has been estimated to range of $0.13{\sim}0.7{\mu}g/kg$ bw/day for European, American and Australian, and $0.22{\sim}5{\mu}g/kg$ bw/day for Asian. The maximum level (ML) for inorganic arsenic in food has established by EU, China, Australia and New Zealand, but are under review in Korea. Until now, several studies have conducted for reduction of inorganic arsenic in food. Inorganic arsenic levels in rice and seaweed were reduced by more polishing and washing, boiling and washing, respectively. Further research for international harmonization of analytical method, monitoring and risk assessment will be needed to strengthen safety management of inorganic arsenic of foods in Korea.

Arsenite-induced Hepatotoxicity in Chang Liver and Clone 9 Cells

  • Yum, Young-Na;Ahn, Jin-Hong;Kim, Gi-Dae;Hwang, Myung-Sil;Kim, Sheen-Hee;Lim, Chul-Joo;Yang, Ki-Hwa;Kim, Dae-Kyung;Cho, Dae-Hyun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.56-56
    • /
    • 2003
  • The reactivity and toxicity of arsenic compounds depend on the their oxidative states. Exposure to arsenic causes many human health effects, including cardiovascular, hepatic and renal disease, in addition to cancer in kidney, liver, lung, urinary bladder and skin. The cytotoxic effects of arsenite on normal hepatocyte, which most of its biotranfomation takes place. (omitted)

  • PDF

Genetic Characteristics of Arsenic Compounds-Resistant Bacteria Isolated from Stream Water (하천에서 분리한 비소 내성세균의 유전적 특성)

  • 정미경;이호자
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.63-68
    • /
    • 1991
  • Several arsenic compound-resistant bacteria were isolated from Jung-Rang stream. The isolates, D-3, D-12, and D-14 were characterized phenotypically and genetically, and identified as Serratia liquefaciens, Klebsiella oxytoca, and Klebsiella pneumoniae, respectively. A plasmid of 67kb was found in Klebsiella oxytoca D-12 and designated as pMH12. Transfer of this plasmid from D-12 to E. coli HB101 was occurred, and the resulting transconjugant strains expressed the same level of heavy metal resistance as the donor strain. The physical presence of this plasmid in transconjugant was detected with agarose gel electrophoresis. Arsenite-sensitive derivatives of isolate D-12 were obtained with Mitomycin C treatment which cured pMH12. Antibiotics and heavy metal resistances were also examined to be used as a proper marker for the isolates in gene cloning. Isolate D-12 has resistance to several heavy metal ions such as $Cd^{2+}$ , $Zn^{2+}$ and $Hg^{ 2+}$ Also, all the other arsenite resistant isolates showed resistance to several heavy metal ions and antibiotics.

  • PDF

Determination of Arsenic in Water by ICP-DRC/MS (ICP-DRC/MS를 이용한 수중의 비소 측정)

  • Jeong, Gwan-Jo;Kim, Dok-Chan;Park, Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.620-625
    • /
    • 2006
  • In this investigation, an ICP-DRC/MS method to measure arsenic with ultra-trace concentration without any interference by the compounds such as $^{40}Ar^{35}Cl^+\;and\;^{40}Ca^{35}Cl^+$, which disturb the precise measurement of arsonic was described. Thus, the oxgen was introduced into the dynamic reaction cell as reaction gas and reacted with arsenic ion created in plasma gas, $AsO^+$ was formed and detected with m/z of 91 by ICP-MS. It resulted in better detection limit than the old method with m/z of 75($As^+$). The optimum condition for oxygen supply as the reaction gas was 0.5 mL/min. The analytical features of the method are as follows: detection limit of $0.02{\mu}g/L$, precision(RSD) of 3.4%, and recovery of 96%. Arsenic in the water samples from the tributary streams to the Han River and the main stream of Paldang were analyzed with this method to identify the characteristics in its distribution. The concentration of As ranged from 0.53 to $1.26{\mu}g/L$. We could measure As with very low concentration, less than $1.0{\mu}g/L$, with excellent reproducibility. The method developed is expected to be applied to analyze As of the samples from sea water, food, and domestic and industrial waste water which have high concentration of Cl and/or Ca.

Quality Characteristics and Antioxidant Potential of Seeds of Native Korean Persimmon Genotypes

  • Kim, Il-Doo;Dhungana, Sanjeev Kumar;Kim, Hye-Ryun;Shin, Dong-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.670-678
    • /
    • 2017
  • Persimmon seeds contain considerable amounts of minerals, amino and organic acids, natural antioxidants and phenolic compounds. The objective of this study was to investigate quality characteristics and antioxidant potential of Korean persimmon seeds. The pH (4.88-4.94), color values, contents of minerals, free amino acids, organic acids, and phenolic compounds and DPPH free radical scavenging potentials of persimmon seed extracts significantly (p < 0.05) varied with the genotypes. This study showed that the seeds could be used as a source of different mineral elements (47.14-85.07 mg/kg) without any measureable amount of heavy metals such as arsenic, cadmium, lead and mercury. Similarly, considerable amounts of organic (1550.13-2413.08 mg/kg) and essential amino (50.85-54.03 mg/kg) acids and total phenolic compounds ($1227.91-1307.78{\mu}g$ gallic acid equivalent/g) were also found in the seed extracts, indicating their potential food value as a natural antioxidant. Results of the present study imply that prethanol-A, a food preservative, can be used as an effective extraction to obtain the minerals, organic and free amino acids, and phenolic compounds from the persimmon seeds, which possess a big potential to be commercially used in food, cosmetic and pharmaceutical industries.

Exposure of Carcinogens in Electronics Industries and Strategy for Control of Carcinogens: Using Work Environment Measurement Database (2013-2017) in Korea (한국 전자산업에서 작업환경측정을 통해 파악된 발암물질들 노출 특성과 발암물질관리 방안: 작업환경측정자료(2013-2017)를 중심으로)

  • Mia, Son;Jaewon, Yun;Yu Seoung, Hwang;Mijin, Park;MinSeo, Choi;Mi-Young, Lee;Domyung, Paek
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.302-324
    • /
    • 2022
  • Objectives: The objective of this study is to investigate exposure to occupational carcinogens in the nationwide electronics industries and to establish a strategy for control of occupational carcinogens in South Korea. Methods: We evaluated occupational carcinogens as defined by International Agency for Research on Cancer (IARC) using a nationwide work environment measurement database on the electronics industry in South Korea measured between 2013 and 2017 in accordance with the Occupational Safety and Health Act. Results: The number of occupational carcinogens found in the electronics industry in South Korea were: 20 for IARC Group 1, 14 for Group 2A, and 30 for Group 2B. The occupational carcinogens (Group 1) most frequently exposed were strong-inorganic-acid mists containing sulfuric acid (sulfuric acid), welding fumes, mineral oils (untreated or mildly treated), nickel compounds, silica dust, crystalline substances in the form of quartz or cristobalite, formaldehyde, arsenic and inorganic arsenic compounds, chromium (VI) compounds, trichloroethylene, cadmium and cadmium compounds, vinyl chloride, ethylene oxide, wood dust, beryllium and beryllium compounds, 1,3 butadiene, benzene, and others. Among them, the carcinogens (Group 1) exceeding the acceptable standard were trichloroethylene, formaldehyde, and ethylene oxide. The working environment measurement system as regulated by Occupational Safety and Health Act is not properly assessed and managed for occupational carcinogens in South Korea. A component analysis for all materials used should be set up to practically reduce occupational carcinogens. A ban on the use of occupational carcinogens and the development of alternative materials are needed. The occupational carcinogens below the acceptable standards should be carefully examined and a new standard for exposure needs to be established. Conclusions: The Occupational Safety and Health Act should be improved to identify and monitor occupational carcinogens at work sites. A strategy for occupational safety and health systems should be provided to give direction to workers' needs and right to know.

Bioassessment and Comparison of Toxicity of Arsenics based on the Results of Various Bioassays (다양한 생물 검정법에 근거한 비소의 위해성 평가 비교)

  • Kong, In-Chul;Kwon, Hyo-Jung;Ko, Kyung-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.795-801
    • /
    • 2010
  • The acute toxicity of arsenic compounds was assessed and compared using following four bioassays; bioluminescence activity of the recombinant strain RB1436, germination of four different seeds, ${\alpha}$-glucosidase activity produced by Bacillus lichemiformis, acute genetic revertant mutation using mutant strain Salmonella typhimurium. Different sensitivities were observed among tested bioassays, but generally the toxicity by arsenite was greater than that of arsenate. Among tested four seeds, sensitivities of Lactucus and Raphanus were greater than others, and these two seed types were appeared as proper type for bioassay. High revertant mutation ratio (5.1) was observed with 1 mg/L arsenite, indicating high mutagenicity. The sensitivity of ${\alpha}$-glucosidase activity on arsenic compounds was much lower than other methods. The evaluation of interactive toxic effects using various bioassays may comprise a useful tool for the bioassessment of environmental pollutants.