• Title/Summary/Keyword: arsenic

Search Result 1,082, Processing Time 0.03 seconds

Arsenic Dissolution and Speciation in Groundwater: review paper (지하수에서 비소의 용해 및 분리(speciation): 리뷰)

  • Kim Myoung-Jin
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.587-597
    • /
    • 2005
  • This review deals with arsenic chemistry and its occurrence in groundwater. Specifically, the paper gives an overview regarding chemical and physical properties of arsenic species, oxidation of As(III), geochemical processes related to the fate and transport of arsenic, arsenic leaching from soil, and mechanism of arsenic leaching from arsenic-containing minerals.

A Study on the Reduction of Inorganic Arsenic in Hijiki and Rice Using the Various Pretreatments and Inductively Coupled Plasma Mass Spectrometry

  • Nam, Sang-Ho;Lee, Dong-Chan
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • Several pretreatment methods have been developed to reduce the inorganic arsenic, which is known to be highly harmful to humans, among various arsenic species present in hijiki and rice. The pretreatment methods were selected and developed as methods that can be non-harmful even after treatment and easily applied. Hijiki was applied by two methods. One was soaking in water at room temperature for various durations and the other was boiling of it in water for a short period of time. Rice was soaked in water with different rice-to-water ratios for various durations. The most effective method that reduced the inorganic arsenic in hijiki was to repeat parboiling for 5 minutes twice, which led to 79% reduction of the inorganic arsenic in it. In the case of rice, soaking for 24 hours at the ratio of 1:5 (rice:water) resulted in 51% reduction of inorganic arsenic in rice.

Simultaneous uptake of arsenic and lead using Chinese brake ferns (Pteris vittata) with EDTA and electrodics

  • Butcher, David J.;Lim, Jae-Min
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Chinese brake fern (Pteris vittata) has potential for application in the phytoremediation of arsenic introduced by lead arsenate-based pesticides. In this study, Chinese brake ferns were used to extract arsenic, mainly in field and greenhouse experiments, and to assess the performance of simultaneous phytoaccumulation of arsenic and lead from homogenized soil in the greenhouse, with the application of EDTA and electric potential. The ferns have been shown to be effective in accumulating high concentrations of arsenic, and extracting both arsenic and lead from the contaminated soil, with the addition of a chelating agent, EDTA. The maximum increase in lead accumulation in the ferns was 9.2 fold, with a 10 mmol/kg addition of EDTA. In addition, the application of EDTA in combination with electric potential increased the lead accumulation in ferns by 10.6 fold at 5 mmol/kg of EDTA and 40 V (dc), compared to controls. Therefore, under application of EDTA and electric potential, Chinese brake fern is able to extract arsenic and lead simultaneously from soil contaminated by lead arsenate.

Characteristics of Hg, Pb, As, Se Emitted from Medium Size Waste Incinerators (중형폐기물 소각시설의 수은, 납, 비소, 셀렌 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.8-18
    • /
    • 2006
  • The aim of this study is to evaluate the emission characteristics of mercury, lead, arsenic, and selenium from medium size municipal solid waste incinerators(MSWIs) in Korea. The concentrations of mercury, lead, arsenic, and selenium emitted from medium size MSWI stack were $2.67\;{\mu}g/Sm^3,\;0.38\;mg/Sm^3,\;1.33\;{\mu}g/Sm^3,\;0.28\;{\mu}g/Sm^3$, respectively. The concentration levels of mercury, lead, arsenic in flue gas from medium size MSW incinerator stacks selected were nearly detected under the Korea criteria level. Removal efficiencies of mercury, lead, arsenic, and selenium in waste heat boiler(WHE) and cooling tower(CT) were $90.36\%,\;69.76\%,\;43.04\%,\;40.64\%$, respectively. In general, the removal efficiencies of mercury and lead in WHE were higher than those of arsenic and selenium in WHE. Emission gas temperature reduction from waste heat boiler(WHB) and cooling tower(CT) can control mercury and lead of medium size MSWIs. To evaluate the relationship between mercury, lead, arsenic, selenium of fly ash and those of flue gas, it was carried out to correlation analysis of each metal concentration in the fly ash and in the flue gas from medium size MSWIs. From the correlation analysis, the coefficients of mercury, lead, arsenic, and selenium were 0.61, -0.38, 0.87, 0.28, respectively. The results of correlation analysis revealed that it should be highly positive to the correlation coefficients of mercury and arsenic in the fly ash and those of the flue gas emitted from medium size MSWIs. As it were, the concentrations of mercury and arsenic of flue gas from medium size MSWIs are high unless mercury and arsenic in fly ash are properly controlled in dust collection step in medium size MSWIs. It was also concluded that mercury, lead, arsenic, and selenium from MSWIs stacks could be controlled by waste heat boiler(WHE) and dust collecting step in medium size MSWIs.

The Comparison of Electric Characteristics of Radiation Detective Sensor(a-Se) with changing composition ratio of Arsenic (Arsenic의 첨가량에 따른 방사선 검출센서 (a-Se)의 전기적 특성 비교)

  • Seok, Dae-Woo;Kang, Sang-Sik;Lee, Dong-Gil;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.391-394
    • /
    • 2002
  • There has recently been much interest and research in developing digital x-ray systems based on using amorphous selenium(a-Se) photoconductors as the image receptor. The amorphous selenium layer that is currently being studied for use as an x-ray photoconductor is not pure a-Se but rather amorphous selenium alloyed with arsenic. We fabricated samples using the selenium and arsenic alloy with various concentrations of the arsenic. In this work, x-ray photoconductor using amorphous selenium alloyed with arsenic were fabricated with different concentrations of the arsenic (0.1 wt.%, 0.3wt.%, 0.5wt.%, 1wt.%, 1.5wt.%, 3wt.%, 5wt.%). The seven kind of samples was fabricated with a-Se alloyed with arsenic through vacuum thermal evaporation. We also investigate the arsenic concentration dependence on the device performance in radiation detector. The electric characteristics of radiation detector devices with changing additive ratio of the arsenic is performed by measuring the x-ray induced photocurrent and integrating it over time to find the total charge. The thickness of a-Se is $100{\mu}m$. Bias voltages $3V/{\mu}m$, $6V/{\mu}m$$9V/{\mu}m$ are applied at the samples. As results, the net charge of a-Se 0.3% As sample is $526.0pC/mR/cm^2$ at $9V/{\mu}m$ bias. The net charge is decreased as with the increasing additive ratio of arsenic.

  • PDF

Quantification of Arsenic Species in Some Seafood by HPLC-AFS (HPLC-AFS를 이용한 해산물 중 비소 화학종 분리정량)

  • Jeong, Seung-Woo;Lee, Chae-Hyeok;Lee, Jong-Wha;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • Background: Considering the expenses of and difficulties in arsenic speciation by high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), alternative measurement methods should be useful, especially for large-scale research and projects. Objectives: A measurement method was developed for arsenic speciation using HPLC-atomic fluorescence spectrometry (HPLC-AFS) as an alternative to HPLC-ICP-MS. Methods: Total arsenic and toxic arsenic species in some seafoods were determined by atomic absorption spectrometry coupled with hydride vapor generation (AAS-HVG) and HPLC-AFS, respectively. Recovery rate of arsenic species in seafood was evaluated by ultra sonication, microwave and enzyme (pepsin) for the optimal extraction method. Results: Limits of detection of HPLC-AFS for As3+, dimethylarsinate (DMA), monomethylarsonate (MMA) and As5+ were 0.39, 0.53, 0.60 and 0.64 ㎍/L, respectively. The average accuracy ranged from 97.5 to 108.7%, and the coefficient of variation was in the range of 1.2~16.7%. As3+, DMA, MMA and As5+ were detected in kelp, the sum of toxic arsenic in kelp was 40.4 mg/kg. As3+, DMA, MMA and As5+ were not detected in shrimp and squid, but total arsenic (iAS and oAS) content in shrimp and squid analyzed by AAS-HVG were 18.1 and 24.7 mg/kg, respectively. Conclusions: HPLC-AFS was recommendable for the quantitative analysis method of arsenic species. As toxic arsenic species are detected in seaweeds, further researches are needed for the contribution degree of seafood in arsenic exposure.

Treatment Technologies for Arsenic Removal from Groundwater: review paper (비소오염지하수의 현장처리기술동향: 리뷰)

  • Bang Sunbaek;Choe Eun Young;Kim Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.599-606
    • /
    • 2005
  • Arsenic is a significantly toxic contaminant in groundwater in many countries. Numerous treatment technologies have been developed to remove arsenic from groundwater. The USEPA recommends several technologies as the best available technology (BAT) candidates for the removal of arsenic. Based on the USEPA classification, arsenic treatment technologies can be divided into four technologies such as precipitation, membrane, ion exchange, and adsorption technology. The recent amendment of arsenic drinking water standard from 50 to $10{\mu}g/L$ in the United States have impacted technology selection and application for arsenic removal from arsenic contaminated groundwater. Precipitation technology is most widely used to treat arsenic contaminated groundwater and can be applied to large water treatment facility. In contrast, membrane, ion exchange, and adsorption technologies are used to be applied to small water treatment system. Recently, the arsenic treatment technology in the United States and Europe move towards adsorption technology to be applied to small water treatment system since capital and maintenance costs are relatively low and operation is simple. The principals of treatment technologies, effect factors on arsenic removal, arsenic treatment efficiencies of real treatment systems are reviewed in this paper.

Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

  • Yasar, Abdullah;Tabinda, Amtul Bari;Shahzadi, Uzma;Saleem, Pakeeza
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.620-626
    • /
    • 2014
  • The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal.

Potential Risk to Human Health by Arsenic and Its Metabolite (환경 오염물질 비소의 체내 대사 및 인체 위해성)

  • Bae Ok-Nam;Lee Moo-Yeol;Chung Seung-Min;Ha Ji-Hye;Chung Jin-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.1 s.52
    • /
    • pp.1-11
    • /
    • 2006
  • Arsenic is a ubiquitous element found in several forms in environment. Although certain foods, such as marine fish, contain substantial levels of organic arsenic forms, they are relatively low in toxicity compared to inorganic forms. In contrast, arsenic in drinking water is predominantly inorganic and very toxic. Chronic ingestion of arsenic-contaminated drinking water is therefore the major pathway posing potential risk to human health. World populations are exposed to low to moderate levels of arsenic of parts per billion (ppb) to thousands of ppb. When exposed to human, it could metabolize into monomethylarsonous acid ($MMA^{III}$) and dimethylarsinous acid ($DMA^{III}$) which are highly toxic. Lots of stuides have been recently focused how $MMA^{III}\;and\;DMA^{III}$ induce toxic insults in various target tissues. Epidemiological studies revealed that chronic arsenic exposure caused cancer, cardiovascular diseases, and diabetes etc. In this review, the current understanding of arsenic on health effects will be discussed.

Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

  • Arifin, Eric;Cha, Jinmyung;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2358-2366
    • /
    • 2013
  • Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite ($AsO^{2-}$) and arsenate ($AsO{_4}^{3-}$), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of $10{\mu}g/L$ without adjusting pH and temperature, which would be highly advantageous for practical field application.