Browse > Article
http://dx.doi.org/10.5806/AST.2019.32.1.1

Simultaneous uptake of arsenic and lead using Chinese brake ferns (Pteris vittata) with EDTA and electrodics  

Butcher, David J. (Department of Chemistry and Physics, Western Carolina University)
Lim, Jae-Min (Department of Chemistry, Changwon National University)
Publication Information
Analytical Science and Technology / v.32, no.1, 2019 , pp. 1-6 More about this Journal
Abstract
Chinese brake fern (Pteris vittata) has potential for application in the phytoremediation of arsenic introduced by lead arsenate-based pesticides. In this study, Chinese brake ferns were used to extract arsenic, mainly in field and greenhouse experiments, and to assess the performance of simultaneous phytoaccumulation of arsenic and lead from homogenized soil in the greenhouse, with the application of EDTA and electric potential. The ferns have been shown to be effective in accumulating high concentrations of arsenic, and extracting both arsenic and lead from the contaminated soil, with the addition of a chelating agent, EDTA. The maximum increase in lead accumulation in the ferns was 9.2 fold, with a 10 mmol/kg addition of EDTA. In addition, the application of EDTA in combination with electric potential increased the lead accumulation in ferns by 10.6 fold at 5 mmol/kg of EDTA and 40 V (dc), compared to controls. Therefore, under application of EDTA and electric potential, Chinese brake fern is able to extract arsenic and lead simultaneously from soil contaminated by lead arsenate.
Keywords
Phytoremediation; Arsenic; Lead; Lead arsenate; Chinese brake fern; EDTA; Electrodics; ICP-OES;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Raskin and B. D. Ensley, 'Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment', John Wiley, New York, 2000.
2 N. Terry and G. S. Banuelos, 'Phytoremediation of Contaminated Soil and Water', Lewis Publishers, Baca Raton, 2000.
3 F. J. Peryea and T. L. Creger, Water Air Soil Pollut., 78, 297 (1994).   DOI
4 USEPA (U.S. Environmental Protection Agency), 'Integrated risk information system (IRIS): arsenic, inorganic', CASRN 7440-38-2, Cincinnati, OH, 1998.
5 S. Wolz, R. A. Fenske, N. J. Simcox, G. Palcisko, and J. C. Kissel, Environmental Research, 93, 293 (2003).   DOI
6 L. L. Embrick, K. M. Porter, A. Pendergrass, and D. J. Butcher, Microchem. J., 81, 117 (2005).   DOI
7 A. Pendergrass and D. J. Butcher, Microchem. J., 83, 14 (2006).   DOI
8 L. Q. Ma, K. M. Komar, W. Zhang, Y. Cai, and E. D. Kennelley, Nature, 409, 579 (2001).   DOI
9 M. I. S. Gonzaga, J. A. G. Santos, and L. Q. Ma, Environmental Pollution, 154, 212 (2008).   DOI
10 A. L. Salido, K. L. Hasty, J.-M. Lim, and D. J. Butcher, Int. J. Phytoremediat., 5, 89 (2003).
11 J.-M. Lim, A. L. Salido, and D. J. Butcher, Microchem. J., 76, 3 (2004).   DOI
12 J.-M. Lim, B. Jin, and D. J. Butcher, Bull. Korean Chem. Soc., 33, 2737 (2012).   DOI
13 S. Tu, L. Q. Ma, A. O. Fayiga, and E. J. Zillioux, Int. J. Phytoremediat., 6, 35 (2004).   DOI
14 P. R. Baldwin and D. J. Butcher, Microchem. J., 85, 297 (2007).   DOI
15 N. Caille, S. Swanwick, F. J. Zhao, and S. P. McGrath, Environmental Pollution, 132, 113 (2004).   DOI
16 J. W. Huang, M. J. Blaylock, Y. Kapulnik, and B. D. Ensley, Environ. Sci. Technol., 32, 2004 (1998).   DOI
17 M. J. Blaylock, D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin, Environ. Sci. Technol., 31, 860 (1997).   DOI
18 S. D. Ebbs and L. V. Kochian, Environ. Sci. Technol., 32, 802 (1998).   DOI