• Title/Summary/Keyword: array transducer

Search Result 197, Processing Time 0.027 seconds

Improved FOM (Figure of Merit) Performance Characteristics of a Linear Array Underwater Acoustic Transducer with a Gradual Wedge-shaped Tail Mass (완만한 쐐기형 Tail Mass를 갖는 선형배열 수중음향변환기의 FOM (Figure of Merit) 성능특성 개선)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.1036-1044
    • /
    • 2021
  • A linear array acoustic transducer with 12 tonpilz elements mounted independently on a gradual wedge-shaped tail mass was fabricated, tested and analyzed. The compensated transducer, which is modified by including a series inductance of 137 µH in the developed linear array transducer, attained improved figure of merit (FOM) performance characteristics compared with the uncompensated transducer. The four resonant frequency bands were identified from the measured FOM curve. The FOM response patterns over the frequency ranges of 31 to 40 kHz and 50 to 60 kHz were relatively uniform, whereas sharp resonance peaks were observed at around 73 kHz and 84 kHz. These results indicate that the developed linear array transducer can be used as an enhanced broadband transducer of echo sounder, and the operating frequency can be selected for more effective echo surveys in the fishing ground.

Beam Pattern Optimization of Hexagonal Array Transducer Using Finite Element Method (유한 요소기법에 의한 육각형 배열 변환기의 지향성 최적화)

  • 장순석;이제형;안흥구
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.123-128
    • /
    • 2000
  • This paper describes the optimization of the hexagonal array transducer using finite element method. The transducer consists of the disc type sensors. Three dimensional beam patterns of each element and the array transducer are analysed using the finite element code ATILA. Beam patterns were analyzed for the disc type transducer. To optimize beam patterns of the array transducer, Chebyshev polynomial weight is applied to each element. In case of applying optimized weight, a 30 degree width beam pattern is presented at 10kHz. This paper also includes the effect of rubber filling material instead of using the water inside the transducer array.

  • PDF

2D Sparse Array Transducer Optimization for 3D Ultrasound Imaging

  • Choi, Jae Hoon;Park, Kwan Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.441-446
    • /
    • 2014
  • A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

Sensitivity analysis of circumferential transducer array with T(0,1) mode of pipes

  • Niu, Xudong;Marques, Hugo R.;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.761-776
    • /
    • 2018
  • Guided wave testing is a reliable and safe method for pipeline inspection. In general, guided wave testing employs a circumferential array of piezoelectric transducers to clamp on the pipe circumference. The sensitivity of the operation depends on many factors, including transducer distribution across the circumferential array. This paper presents the sensitivity analysis of transducer array for the circumferential characteristics of guided waves in a pipe using finite element modelling and experimental studies. Various cases are investigated for the outputs of guided waves in the numerical simulations, including the number of transducers per array, transducer excitation variability and variations in transducer spacing. The effect of the dimensions of simulated notches in the pipe is also investigated for different arrangements of the transducer array. The results from the finite element numerical simulations are then compared with the related experimental results. Results show that the numerical outputs agree well with the experimental data, and the guided wave mode T(0,1) presents high sensitivity to the notch size in the circumferential direction, but low sensitivity to the notch size in the axial direction.

A Beam Design Method for Planar Array with Unequal Transducer Sensitivities (불균일 트랜스듀서 감도를 갖는 평면 배열의 빔 설계 기법)

  • 조치영;권오조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.663-669
    • /
    • 1998
  • In this paper, a beam design method is presented for the planar array with unequal transducer sensitivities. Basically the proposed method consists of two steps. At first, the optimum weightings are designed with the assumption that all array elements have an uniform sensitivity. Next, the compesnated weightings for the unequal transducer sensitivities can reversely be determined from an inverse problem utilizing the design beam pattern evaluated by the predetermined optimal weightings. A numerical example is inculded to illustrate the proposed method.

  • PDF

Equivalent Circuit Modelling of FFR Transducer Array for Sonar System Design (소나 시스템 설계를 위한 FFR 트랜스듀서 어레이의 등가회로 모델링)

  • Kim, In-Dong;Choi, Seung-Soo;Lee, Haksue;Lee, Seung Woo;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.629-635
    • /
    • 2017
  • Free-Flooded Ring (FFR) transducer array for use in Sonar system can be driven with large amplitude in a wide frequency band due to its structural characteristics, in which two resonances of a ring mode (1st radial mode) and an inner cavity vibration mode occur in a low frequency band. Since its sound wave generation characteristics are not influenced by the water pressure, the FFR transducer array is widely used in the deep sea. So FFR has been recognized as a low-frequency active sound source and has received much attention ever since. In order to utilize the FFR transducer array for SONAR systems in military and industrial applications, its equivalent electric circuit model is necessary especially to design the matching circuit between the driving power amplifier and the FFR transducer array. Thus this paper proposes the equivalent electric circuit model of FFR transducer array by using measured values of parameter, and suggest the improved method of parameter identification. Finally it verifies the effectiveness of the proposed circuit model of FFR transducer array by experimental measurements.

Design and Development Research of a Parametric Array Transducer for High Directional Underwater Communication (고지향 수중 통신을 위한 파라메트릭 어레이 트랜스듀서의 설계 및 개발 연구)

  • Hwang, Yonghwan;Je, Yub;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.117-129
    • /
    • 2015
  • A parametric array is a nonlinear phenomenon that generates a narrow beam of low-frequency sound using the nonlinearity of the medium. The low-frequency sound so generated has a low sound pressure compared with that of sound generated directly. Consequently, a transducer that can generate a primary wave with high directivity and level is required. This study designed, fabricated, and evaluated a multi-resonance transducer as a parametric array source. The designs of the unit transducers and array transducer were based on an analysis model. The design process was repeated to fabricate the optimum transducer. The fabricated transducer array can generate a 189 dB, 190 dB primary wave level at 6.3 m and a 134 dB difference frequency wave using the parametric array phenomenon. The difference frequency wave has a frequency of 15 kHz and high directivity with an $8^{\circ}$ half power beam width in a $12{\times}18{\times}10m$ water tank.

Directivity Characteristics Control of Ultrasonic Transducer Array Using Two-layered Piezoelectric Transducer (2층 구조 압전 트랜스듀서를 이용한 초음파 트랜스듀서 어레이의 지향 특성 가변)

  • 김정호;송인진;하강렬;김천덕;김무준
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.629-636
    • /
    • 2003
  • It will be very convenient if the directivity characteristics of ultrasonic transducer array are controllable by the purpose of use in the fields of sonar system or ultrasonic diagnostic system, In this paper, a control method of the directivity characteristics was suggested. The transducer array was consisted of two-layered piezoelectric vibrators. Efficiency of each vibrator is controlled in 2nd harmonic mode by electrical capacitance. Therefore, the beam width of the transducer array can be controlled by changing the capacitance. The directivity characteristics of the array were analyzed experimentally and theoretically. As the results, it is confirmed that -3 dB beam width of main lobe can be controlled in the range of 7.6°∼16.2°.

Generation and Detection of Torsional Waves in a Rotating Shaft Using a Magnetostrictive Patch Array (자기변형 패치 배열을 이용한 회전축에서의 비틀림파 발생 및 감지)

  • Cho Seung-Hyun;Han Soon-Woo;Park Chan-Il;Kim Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.342-348
    • /
    • 2006
  • A new magnetostrictive patch array transducer for the generation and detection of torsional waves is developed fur the on-line health monitoring of rotating shafts. Even though the torsional wave is useful in nondestructive evaluation due to its non-dispersive property, a transducer generating torsional waves in rotating shafts has not been developed so far. In this research, a torsional wave transducer using the magnetostrictive effect is newly developed. By bonding an away of magnetostrictive rectangular patches on the outer surface of the shaft at an oblique angle of $45^{\circ}$ and encircling the array by a solenoid coil, we have successfully generated and measured torsional waves by the developed transducer. Several experiments were carried out to check the transducer performance.

Design and Fabrication of Linear-Array Ultrasonic Transducer Using KLM and FEM Simulation for Non-Destructive Testing (KLM 및 FEM 시뮬레이션을 이용한 비파괴검사용 선형배열 초음파 탐촉자의 설계 및 제작)

  • Park, Chan-Yuk;Sung, Jin-Ho;Jeong, Jong-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • In this paper, a linear-array transducer capable of overcoming the faults of a single element and phased array transducers with convex shape for non-destructive ultrasonic testing was designed and fabricated. A 5.5 MHz linear-array transducer was designed using the PiezoCAD program based on the KLM analysis and the PZFlex program based on the FEM analysis. A 2-2 composite structure was employed to achieve broad-band characteristics. A 128 element linear-array transducer was fabricated and its performance was compared with the simulation results. The center frequency of the fabricated transducer was 5.5 MHz and the -6 dB frequency bandwidth was 70 %. Thus, we expect that the designed transducer can provide an effective inner image of the test material during non-destructive ultrasonic testing.