• Title/Summary/Keyword: array antenna system

Search Result 488, Processing Time 0.029 seconds

Design and BER Performance Evaluation for Digital Retrodirective Array Antenna systems (디지털 역 지향성 배열 안테나 시스템 설계와 성능 평가)

  • Kim, So-Ra;Lee, Seug Hwan;Shin, Dong Jin;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.217-223
    • /
    • 2013
  • A digital retrodirective antenna system is easy to modify and upgrade because it can control the phase information of the output signal toward opposite direction to input signal without a priori knowledge of the arrival direction. Due to this advantage, it is possible to perform fast beam tracking. In this paper, a design digital retrosirective array antenna system according to the number of antenna array by using only one digital PLL which finds angle of delayed phase and we test BER performance of this system. When we transmit data at actual communication system, the data modulated onto carrier frequency in order to shift spectrum from base band to another band. So we simulate system considering carrier frequency according to the number of antenna array. As a result, carrier frequency has no impact on the performance.

Design of Miniaturized Microstrip Patch Antennas Using Non-Foster Circuits for Compact Controlled Reception Pattern Antenna Array

  • Ha, Sang-Gyu;Cho, Jeahoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.108-110
    • /
    • 2017
  • The global positioning system (GPS) is a useful system in civilian and military applications. However, because of the weak signal, GPS receivers are vulnerable to interference caused by unwanted signals or intentional jammers. To alleviate this issue, a controlled reception pattern antenna (CRPA) array can be employed to adaptively place radiation pattern nulls toward the direction of the signal interference. The performance of the CRPA array improves as the number of antenna elements increases. Therefore, antenna miniaturization is highly desirable for CRPA applications. We designed a compact CRPA array based on seven electrically miniaturized microstrip patch antennas (MPAs) on a 5-inch ground platform. We used a non-Foster matching circuit to match efficiently miniaturized MPAs on an FR-4 substrate. Experimental results show that the non-Foster matching circuit significantly improves such elements of antenna performance as return loss and antenna gain. In addition, we confirmed that the mutual coupling of the proposed CRPA array is less than -45 dB.

Performance Analysis of Adaptive Array Antenna for GPS Anti-Jamming (GPS 항재밍을 위한 적응 배열 안테나의 성능 분석)

  • Jeong, Taehee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.382-389
    • /
    • 2013
  • In anti-jamming GPS receiver, adaptive signal processing techniques in which the radiation pattern of adaptive array antenna of elements may be adaptively changed used to reject interference, clutter, and jamming signals. In this paper, I describes adaptive signal processing technique using the sample matrix inversion(SMI) algorithm. This adaptive signal processing technique can be applied effectively to wideband/narrowband anti-jamming GPS receiver because it does not consider the satellite signal directions and GPS signal power level exists below the thermal noise. I also analyzed the effects of covariance matrix sample size and diagonal loading technique on the system performance of five-element circular array antenna. To attain near optimum performance, more samples required for calculation covariance matrix. Diagonal loading technique reduces the system nulling capability against low-power jamming signals, but this technique improves robustness of adaptive array antenna.

A New Online Calibration Algorithm for Array Antenna using Independent Component Analysis

  • Suk, Mi-Kyung;Lee, Jong-Hyun;Chun, Joo-Hwan;Park, Jin-Kyu;Kim, Yong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1568-1572
    • /
    • 2004
  • This paper proposes a new online calibration algorithm for the array antenna system. As you know, the several previous calibration methods for the mutual coupling did not estimate but measure mutual coupling effect at the real or test-bed system directly. Therefore we suggest some idea to compensate the calibration errors due to mutual coupling effect and mismatch in cables and electronic modules without the off-line calibration. In this work, we can calibrate the array antenna system under the operation of the system using Independent Component Analysis(ICA). This is what is called an online calibration. As you know, the ICA method has permutation and scaling problems. However, we solve problems of the ICA method and apply it to the calibration of an array antenna. The method simultaneously estimates the DOA(Direction of Arrival) of the signals, and calibrates the array for that specific angle. The proposed algorithm is evaluated by computer simulation and its behavior is illustrated by a numerical example.

  • PDF

Photonic True-Time Delay for Phased-Array Antenna System using Dispersion Compensating Module and a Multiwavelength Fiber Laser

  • Jeon, Hyun-Bin;Lee, Hojoon
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.406-413
    • /
    • 2014
  • An optical true-time delay beam-forming system using a tunable dispersion compensating module (DCM) for dense-wavelength division modulation (DWDM) and a multiwavelength fiber ring laser for a phased array antenna is proposed. The multiwavelength fiber ring laser has one output that includes four wavelengths; and four outputs that include only single-wavelength. The advantage of such a multiwavelength fiber ring laser is that it minimizes the number of devices in the phased array antenna system. The time delays according to wavelengths, which are assigned for each antenna element, are obtained from the tunable DCM. The tunable DCM based on a temperature adjustable Fabry-Perot etalon is used. As an experimental result, a DCM could be used to obtain the change of the beam angle by adjusting the dispersion value of the DCM at the fixed lasing wavelengths of the fiber ring laser in the proposed optical true-time delay.

A Novel Calibration Method Using Zadoff-Chu Sequence and Its FPGA Implementation (Zadoff-Chu sequence를 이용한 실시간 Calibration 알고리즘과 FPGA 구현)

  • Jang, Jae Hyun;Sun, Tiefeng;Yang, Hyun Wook;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.59-65
    • /
    • 2013
  • This paper presents a novel calibration method for a base station system adopting an antenna array. The proposed technique utilizes Zadoff-Chu sequence, which is included in the LTE pilot signal periodically, in order to compute the phase characteristic of each antenna channel. As the Zadoff-Chu sequence exhibits an excellent autocorrelation characteristic, it is possible for the receiving base station to retrieve the Zadoff-Chu sequence transmitted from each mobile terminal. In addition, we can obtain the phase characteristic of each antenna channel, which is the ultimate goal of the calibration procedure. The proposed calibration algorithm has been implemented using an FPGA (Field Programmable Gate Array). We have applied the proposed algorithm to an array consisting of 2 antenna elements for simplicity. the phase value implied to the first and second antenna path is very accurately calculated from the proposed procedure. From the experimental test, the proposed method provides accurate calibration results.

Radiation Characteristics of Parallel Slot Antenna for Automotive Radar System (자동차 레이더 시스템을 위한 병렬형 슬롯 방식 안테나의 방사 특성)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1980-1985
    • /
    • 2010
  • This paper is about design of optimal structure of slot antenna array antenna with inner waveguide in accordance with the slot model, and fabrication of its prototype sample operating at the frequency of 24 GHz. Results of this work can be employed as a useful tool to develop and diversify slot antenna having superior performance and omni-directivity to that of current antenna. The implemented antenna demonstrates ultra-wideband performance for frequency ranges 24 GHz with the relatively high and flat antenna gain of 18.64dBi and low sidelobe levels. In addition, a $2{\times}8$ antenna array for phased-array systems and mm-wave sensor applications is also presented.

Squint-less Phased Array Antenna Near-field Subwavelength Focusing with True-time Optical Delay Line (광 지연선로를 이용한 스퀸팅이 없는 위상배열 안테나의 근접장 서브파장 포커싱)

  • Jung, Young Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.94-100
    • /
    • 2019
  • The near-field subwavelength squint-less focusing system of a phased array antenna is designed and demonstrated by numerical simulation. The Huygens-Fresnel principle is applied to numerical simulation for calculation of the phased array antenna at microwave frequency. It was shown that beam squinting can be eliminated, utilizing true-time optical delay lines based on a chirped fiber grating in the proposed system. Furthermore, subwavelength focusing with high numerical aperture can be achieved by considering the fact that the array elements of the phased-array antenna can be treated as diffractive elements in an optical lens system. Also, side lobes can be suppressed by decreasing the distance between element antennas to less than half of the wavelength.

Design of an Array Antenna Hood for Jamming Simulator

  • Kim, Mi-Suk;Ju, Jeong-Gab;Kim, Jong Seong;Son, Seok Bo;Yun, Sang Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.2
    • /
    • pp.63-69
    • /
    • 2014
  • In this study, due to the necessity of the equipment for inspecting an anti-jamming function depending on the expansion of the development of anti-jamming systems, an array antenna hood that can inspect the anti-jamming function of an anti-jamming system while being installed at the system was designed and manufactured. The manufactured array antenna hood plays a role in radiating GNSS signals and jamming signals. Based on an experiment, it was demonstrated that using a near-field radiation method, the manufactured array antenna hood could be used for examining the normal operation of an anti-jamming system function in outdoor or indoor environments rather than an anechoic chamber.

Study on HTS Antenna Array with Circularly Polarization for DBS Receiver (직접 위성방송 수신용 원편파 HTS 배열 안테나 관한 연구)

  • 정동철;윤창훈;최효상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.776-781
    • /
    • 2004
  • We report the performance of a four-element, 11.67 GHz, $high-{T}_c$ superconducting (HTS) microstrip antenna array with corporate feed network. The HTS antenna array used in this work had a circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from ${YBa}_2{Cu}_3{O}_7-x(YBCO)$ superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at cryogenic temperature and room temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.