• Title/Summary/Keyword: aromatase expression

Search Result 40, Processing Time 0.02 seconds

Increased effects of Bee Venom on aromatase expression and activity in the human osteoblastic cells (인간 골아세포에서 aromatase 효소의 발현과 활성에 대한 봉독의 증강효과)

  • Choi, Woo-shik;Kim, Kap-sung
    • Journal of Acupuncture Research
    • /
    • v.19 no.5
    • /
    • pp.136-148
    • /
    • 2002
  • 본 연구는 osteoblastic cells에서 estogen 의 생합성을 유도하는 aromatase의 activity에 대한 봉독(蜂毒)작용을 측정하여, 봉독치료시 Arthritis의 진행 억제 및 estogen의 의한 bone formation의 효과여부를 검증하기 위해 실행하였다. 사용된 세포주로는 Osteoblastic phenotype으로 분화가 유도되는 Human leukaemic cell line FLG 29.1 및 the primary first-passage osteoblastic cells (hOB cells)이며, 이들을 각각 배양하고 각각의 RNA를 isolation한 뒤 PCR 증폭을 하였다. Aromatase에 대한 활성인자인 TPA와 TGF-${\beta}1$ 및 봉독을 이용하여 aromatase의 expression 및 activity에 대해 미치는 영향을 측정한 바, aromatase expression은 FLG 29.1 cell와 hoB cells에서, 50nM TPA 24시간 처리, 봉독 2 ~ 4시간 처리와 TGF-${\beta}1$ 3시간 처리로 유도한 결과 TPA와 TGF-${\beta}1$의 경우는 서로 유사하였고, 봉독에서 상대적으로 높게 나타났다. Aromatase activity는 FLG 29.1 cell, hoB cells에서 24시간 incubation한 결과, 모든 실험에서 일정하게 선상증가를 보였다. $5{\mu}{\ell}/m{\ell}$ BV에서 TPA와 TGF-${\beta}1$보다 뚜렷하게 증가하였으며, 0.5mM Bt2-cAMP, 50nM dexametasone처리에서는 유의성이 없었다. Estrogen 생합성을 촉매하는 aromatase activity BV가 처리에서 현저하게 증가하였기에, Rheumatis arthritis의 bone destruction에 대해 BV가 효과적인 역할을 할 것으로 보여진다.

  • PDF

Functional Investigation on Aromatase in Endometrial Hyperplasia in Polycystic Ovary Syndrome Cases

  • Zhao, Pan-Lin;Zhang, Qiu-Fang;Yan, Li-Ying;Huang, Shuo;Chen, Yuan;Qiao, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8975-8979
    • /
    • 2014
  • Objective: To explore the possible significance of aromatase P450 in endometrial hyperplasia with a background of polycystic ovary syndrome (PCOS). Methods: Immunohistochemistry was used to determine the expression of aromatase P450 in endometrium of PCOS patients. Semiquantitative analysis of aromatase P450 expression of mRNA and protein level wasalso carried out by real-time quantitative RT-PCR method. After endometrial cells were stimulated by testosterone and letrozole in vitro, the estradiol ($E_2$) level was determined, and the expression of cell aromatase P450 mRNA was assessed. Results: The aromatase P450 mRNA level was increased in endometria of PCOS patients. When endometrial cells were cultured with $10^{-6}M$ testosterone, the $E_2$ level in the culture medium increased. An inhibitory effect on $E_2$ generation and expression of aromatase P450 mRNA was observed when the endometrial cells were treated with $10^{-5}M$ letrozole. Conclusions: There is an increased expression of aromatase P450 in PCOS patient endometrium. Androgen stimulation could enhance the synthesis of aromatase P450 mRNA and the production of $E_2$ in endometrial cells in vitro while letrozole could do the reverse.

Effect of Endocrine Disrupting Chemicals on Bombina orientalis Aromatase Activity Expressed in Cultured Mammalian Cells

  • Yang, Won-Seok;Han, Xiang-Zi;Lee, Kyoung-Soon;Lee, Kyung-Min;Ju, Ji-Hyun;Shin, In-Cheol
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • In this study we present a mammalian cell culture model that allows to study the effect of endocrine disruptors (EDCs) on aromatase activity of aquatic amphibian, Bombina orientalis. Bombina orientalis aromatase gene was subcloned into a mammalian expression vector and subsequently transfected to mammalian cells. Although the protein expression level of Bombina orientalis aromatase was low, it had a significant aromatase activity. When EDCs were added to aromatase transfected cells, aromatase activity was significantly decreased. We report here that this system may be used to monitor the effect of EDCs on aromatase activity of aquatic organisms.

Expression of Cytochrome P450 Aromatase Genes during Sex Differentiation in Korean Rockfish, Sebastes schlegeli (조피볼락, Sebastes schlegeli의 성분화 기간 중 Cytochrome P450 Aromatase 유전자의 발현)

  • Lee, Chan-Hee;Kwon, Joon-Yeong
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.195-203
    • /
    • 2007
  • Sex determination and sex differentiation are influenced by genotype in many gonochoristic fish. Cytochrome P450 aromatase (CYP19) is the terminal enzyme in steridogenic pathway that converts androgens into estrogens. In this study, partial fragments of aromatase genes (ovarian aromatase, P450aromA and brain aromatase, P450aromB) were cloned and sequenced in Korean rockfish (Sebastes schlegeli), and gene specific primers were designed based on their sequences. Using these primers, aromatase gene expression during sex differentiation was investigated by RT-PCR. Expression of these aromatase genes were detected both in the head and body parts at 35 dab (days after birth). The number of fish that expressed the aromatase genes decreased at 52 dab, implying down-regulation of these genes. However, these genes were expressed at 59 dab in almost all fish studied here. The expression patterns of both genes are similar throughout the investigated period except for 45 dab where the expression of P450aromB was detected in more fish than that of P450aromA both in the head and body parts. Timing of sex differentiation in this species has been shown to be at around $50{\sim}65$ dab by histological analysis. However, the results from this study suggest that sex differentiation of rockfish may take place $1{\sim}2$ weeks earlier than the period proposed previously. The results also suggest that the mechanism of sex differentiation in viviparous fish may be similar to that in oviparous fish in terms of the importance of aromatase action during the critical period.

  • PDF

Heat stress during summer reduced the ovarian aromatase expression of sows in Korea

  • Hwan-Deuk Kim;Sung-Ho Kim;Sang-Yup Lee;Tae-Gyun Kim;Seong-Eun Heo;Yong-Ryul Seo;Jae-Keun Cho;Min Jang;Sung-Ho Yun;Seung-Joon Kim;Won-Jae Lee
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.3
    • /
    • pp.227-234
    • /
    • 2023
  • It has been addressed that heat stress due to high atmospheric temperature during summer in Korea induces impaired release of reproductive hormones, followed by occurring abnormal ovarian cyclicity, lower pregnancy ratio, and reduced litter size. Therefore, the present study attempted to compare seasonal change (spring versus summer) of the ovarian aromatase expression, an enzyme for converting testosterone into estrogen. While serum estrogen level in summer group was significantly lower than that of spring group, testosterone was not different between groups. Consistent with estrogen level, the ovarian aromatase expression in summer at follicular phase was significantly lower than the counterpart of spring. The ovarian aromatase expression was positively related with serum estrogen level significantly (r=0.689; P=0.008) and strongly negative correlation was identified (r=-0.533; P=0.078) with atmospheric temperature. The ovarian aromatase expression was not detected in immature ovarian follicles but specifically localized in the granulosa cell layers in both seasons. However, the aromatase intensity in the granulosa cell layers was stronger in spring than summer. Because testosterone level was not different between groups, it could be concluded that the lower level of estrogen during summer might be derived by not lack of substrate but lower expression of ovarian aromatase by heat stress.

Downregulation of the Expression of Steroidogenic Acute Regulatory Protein and Aromatase in Steroidogenic KGN Human Granulosa Cells after Exposure to Bisphenol A

  • Ji-Eun Park;Seung Gee Lee;Seung-Jin Lee;Wook-Joon Yu;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.185-193
    • /
    • 2023
  • Although increasing evidence of cause-and-effect relationship between BPA exposure and female reproductive disorders have been suggested through many studies, the precise biochemical and molecular mechanism(s) by which BPA interferes with steroidogenesis in the ovarian cells still remain unclear. Therefore, the purpose of this study was to discover the steroidogenic biomarker(s) associated with BPA treatment in human granulosa cell line, KGN. In this study, our results obtained via the analysis of steroidogenesis-related protein expression in KGN cells using quantitative polymerase chain reaction (qPCR) and western blot analyses revealed that the expression levels of steroidogenic acute regulatory (StAR) and aromatase decreased considerably and gradually after BPA treatment in a dose-dependent manner under BPA treatment. Further, remarkable decreases in their expression levels at the cellular levels were also confirmed via immunocytochemistry, and subsequent StAR and aromatase mRNA expression levels showed profiles similar to those observed for their proteins, i.e., both StAR and aromatase mRNA expression levels were significantly decreased under BPA treatment at concentrations ≥0.1 μM. We observed that follicle stimulating hormone upregulated StAR and aromatase protein expression levels; however, this effect was suppressed in the presence of BPA. Regarding the steroidogenic effects of BPA on KGN cells, controversies remain regarding the ultimate outcomes. Nevertheless, we believe that the results here presented imply that KGN cells have a good cellular and steroidogenic machinery for evaluating endocrine disruption. Therefore, StAR and aromatase could be stable and sensitive biomarkers in KGN cells for the cellular screening of the potential risk posed by exogenous and environmental chemicals to female reproductive (endocrine) function.

Detection of Tissue-specific Expression of Porcine Cytochrome P450 Aromatase Genes by Use of Denaturing High Performance Liquid Chromatography(DHPLC) Technique (DHPLC 기술을 이용한 돼지 Cytochrome P450 Aromatase 유전자의 조직 - 특이적 발현양상 관찰)

  • Chae, S.H.;Ghlmeray, A.K.;Hong, J.M.;Lee, E.J.;Chang, J.S.;Choi, I
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.315-324
    • /
    • 2004
  • Cytochrome P450 aromatase is the enzyme responsible for biosynthesis of female sex hormone(estrogen) and 19-nortestosterone(nandrolone), a unique steroid hormone endogenously synthesized in the pig. By use of RT-PCR coupled with DHPLC technique (WAVE analysis), expression pattern of isoforms of porcine cytochrome P450 aromatase gene was investigated. Relatively higher expression of aromatase mRNA was observed in testis than in ovary and this result accounted for the previous findings of higher blood estrogen level in male compared with female in this species. The result from the DHPLC demonstrated that PCR amplified DNA fragments of ovary and testis tissues. using unique PCR primers for all three types of aromatase genes, were different from those of type II and ill genes. Further nucleotide sequence analyses of the plasmid clones containing the PCR products revealed that nucleotide sequences of all clones were identical to type I aromatase gene(ovary type). Thus, the result from the present study indicates that the ovary and testis express the same type of aromatase gene. Therefore, the efficacy of DHPLC techniques used for this study helped us to analyze tissue-specific expression of isoform of genes containing the nucleotide sequences with high homology.

Testicular Expression of Steroidogenic Enzyme Genes Is Related to a Transient Increase in Serum 19-nortestosterone during Neonatal Development in Pigs

  • Choi, Nag-Jin;Hyun, Jin Hee;Choi, Jae Min;Lee, Eun Ju;Cho, Kyung Hyun;Kim, Yunje;Chang, Jongsoo;Chung, Il Byung;Chung, Chung Soo;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1832-1842
    • /
    • 2007
  • Cytochrome P450 aromatase is responsible for the biosynthesis of estrogen. It is also responsible for the endogenous production of 19-nortestosterone (nandrolone), an anabolic androgen unique to pigs. Plasma concentrations of 19-nortestosterone are highest between two and four weeks after birth in male pigs. In the present study, the physiology of 19-nortestosterone was investigated by measuring the mRNA levels of steroidogenic enzymes, estrogen receptors and androgen receptor in the tissues of growing pigs. The expression of aromatase, 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the testes of male piglets increased between birth and two weeks of age, and then decreased progressively. Similar developmental expressional patterns were observed for 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the ovaries of female piglets, but without significant aromatase expression. The major form of aromatase expressed in the testes of piglets was identified as type I. Expression of estrogen receptor-${\alpha}$ and -${\beta}$and androgen receptor genes was also detected in both testes and ovaries. A transient elevation of androgen receptor mRNA in male piglets at two weeks of age was also observed in testes. Significant expression of the androgen receptor gene, but not of estrogen receptor-${\alpha}$ and -${\beta}$ genes, was also demonstrated in adipose tissue and muscle. We conclude that the observed increase in the testicular expression of aromatase in male pigs could account for the production of large amounts of 19-nortestosterone at between two and four weeks of age in males. Androgen receptor and 19-nortestosterone appeared to be important for testicular development and might contribute to sexual dimorphism in body composition and muscle development in juvenile pigs.

Effect of DDT on Testosterone Production by Modulator Aromatase (CYP 19) in R2C

  • Lee, Kyung-Jin;Lee, Jong-Bin;Jeong, Hye-Gwang
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.308-312
    • /
    • 2003
  • Various pesticides known or suspected to interfere with steroid hormone function were screened toy effects in leydig cells on catalytic activity and mRNA expression of aromatase. Dichlorodiphenyltrichloroethane (DDT) is a widespread environmental pollutant. In this study, we investigated the effect of DDT on testosterone production through aromatase activity and its molecular mechanism in testicular leydig cell, R2C by using radioimmunoassay (RIA). As the results, the potent leydig: cell activator LH increased testosterone production compared to the control. DDT exposure significantly decreased testosterone production in R2C cell. In addition, DDT was found to increase aromatase gene expression and activity in R2C cell in a dose dependent manner. In order to assess whether the suppressive effects of DDT on LH-inducible testosterone (T) production might be influenced by the ER, ICI 182.780 was used, and it was found that these inhibitory effects of DDT were antagonized by ICI 182.780, implying that the estrogen receptor (ER) mediates the suppressive effects of DDT. Furthermore, the inducible effects of DDT on aromatase gene expression might be influenced by the ER, ICI 182.780 was used, and it was found that these enhancing effects of DDT were antagonized by ICI 182.780, implying that the ER mediates the inducible effects of DDT. Our results indicated that DDT inhibition of luteinizing hormone (LH) -inducible T production in R2C cell is mediated through aromatase. However, the precise mechanisms by which DDT enhance in R2C cell remains unknown. The current study suggests the possibility that DDT might act as a modulator aromatase gene transcription.

Effect of Water Extracts from Thesium chinense Tunczaninov and Prunella vulgaris L. on Aromatase and Cyclooxygenase Activities (하고초 열수추출물이 Aromatase와 Cyclooxygenase 활성에 미치는 영향)

  • Nam, Kyung-Soo;Shon, Yun-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.147-151
    • /
    • 2004
  • Water extracts from Thesium chinense Tunczaninov (TCTW) and Prunella vulgaris L. (PVW) were tested for aromatase and cyclooxygenase activities. TCTW and PVW were capable of suppressing aromatase in a human placenta microsomal assay. PVW was shown to be more effective than TCTW in the suppression of aromatase activity. TCTW significantly inhibited cyclooxygenase-2 (COX-2) activity at the concentration of 0.25 (p<0.05), 0.5 (p<0.01) and 2.5 mg/ml (p<0.005). PVW also inhibited COX-2 activity in a dose-dependent manner in a concentration range of $0.05{\sim}2.5\;mg/ml$. The expression of COX-2 was inhibitied by TCTW and PVW in western blot analysis. These results suggest that TCTW and PVW may have breast cancer chemopreventive potentials by inhibiting aromatase and cyclooxygenase activities.