DOI QR코드

DOI QR Code

Testicular Expression of Steroidogenic Enzyme Genes Is Related to a Transient Increase in Serum 19-nortestosterone during Neonatal Development in Pigs

  • Choi, Nag-Jin (Hanwoo Experiment Station, National Institute of Animal Science) ;
  • Hyun, Jin Hee (Department of Biotechnology, Yeungnam University) ;
  • Choi, Jae Min (Department of Biotechnology, Yeungnam University) ;
  • Lee, Eun Ju (Department of Biotechnology, Yeungnam University) ;
  • Cho, Kyung Hyun (School of Biotechnology, Yeungnam University) ;
  • Kim, Yunje (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Chang, Jongsoo (Department of Agricultural Science, Korea National Open University) ;
  • Chung, Il Byung (Hanwoo Experiment Station, National Institute of Animal Science) ;
  • Chung, Chung Soo (Department of Animal Science, Chungbuk National University) ;
  • Choi, Inho (Department of Biotechnology, Yeungnam University)
  • Received : 2007.04.17
  • Accepted : 2007.07.04
  • Published : 2007.12.01

Abstract

Cytochrome P450 aromatase is responsible for the biosynthesis of estrogen. It is also responsible for the endogenous production of 19-nortestosterone (nandrolone), an anabolic androgen unique to pigs. Plasma concentrations of 19-nortestosterone are highest between two and four weeks after birth in male pigs. In the present study, the physiology of 19-nortestosterone was investigated by measuring the mRNA levels of steroidogenic enzymes, estrogen receptors and androgen receptor in the tissues of growing pigs. The expression of aromatase, 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the testes of male piglets increased between birth and two weeks of age, and then decreased progressively. Similar developmental expressional patterns were observed for 17${\alpha}$-hydroxylase and 3${\beta}$-hydroxysteroid dehydrogenase in the ovaries of female piglets, but without significant aromatase expression. The major form of aromatase expressed in the testes of piglets was identified as type I. Expression of estrogen receptor-${\alpha}$ and -${\beta}$and androgen receptor genes was also detected in both testes and ovaries. A transient elevation of androgen receptor mRNA in male piglets at two weeks of age was also observed in testes. Significant expression of the androgen receptor gene, but not of estrogen receptor-${\alpha}$ and -${\beta}$ genes, was also demonstrated in adipose tissue and muscle. We conclude that the observed increase in the testicular expression of aromatase in male pigs could account for the production of large amounts of 19-nortestosterone at between two and four weeks of age in males. Androgen receptor and 19-nortestosterone appeared to be important for testicular development and might contribute to sexual dimorphism in body composition and muscle development in juvenile pigs.

Keywords

References

  1. At-Taras, E. E., T. Berger, M. J. McCarthy, A. J. Conley, B. J. Nitta-Oda and J. F. Roser. 2006a. Reducing estrogen synthesis in developing boars increases testis size and total sperm production. J. Androl. 27:552-559. https://doi.org/10.2164/jandrol.05195
  2. At-Taras, E. E., A. J. Conley, T. Berger, J. F. Roser. 2006b. Reducing estrogen synthesis does not affect gonadotropin secretion in the developing boar. Biol. Reprod. 74:58-66. https://doi.org/10.1095/biolreprod.105.043760
  3. Callard, G. V. and A. Tchoudakova. 1997. Evolutionary and functional significance of two CYP19 genes differentially expressed in brain and ovary of goldfish. J. Steroid Biochem. Mol. Biol. 61:387-92. https://doi.org/10.1016/S0960-0760(97)80037-4
  4. Chiang, E. F., Y. L. Yan, Y. Guiguen, J. Postlethwait and B. C. Chung. 2001. Two Cyp19 (P450 aromatase) genes on duplicated zebrafish chromosomes are expressed in ovary or brain. Mol. Biol. Evol. 18:542-550. https://doi.org/10.1093/oxfordjournals.molbev.a003833
  5. Choi, I., W. R. Collante, R. C. Simmen and F. A. Simmen. 1997. A developmental switch in expression from blastocyst to endometrial/placental-type cytochrome P450 aromatase genes in the pig and horse. Biol. Reprod. 56:688-696. https://doi.org/10.1095/biolreprod56.3.688
  6. Choi, I., R. C. Simmen and F. A. Simmen. 1996. Molecular cloning of cytochrome P450 aromatase complementary deoxyribonucleic acid from periimplantation porcine and equine blastocysts identifies multiple novel 5'-untranslated exons expressed in embryos, endometrium, and placenta. Endocrinol. 137:1457-1467. https://doi.org/10.1210/en.137.4.1457
  7. Claus, R. and B. Hoffmann. 1980. Oestrogens, compared to other steroids of testicular origin, in blood plasma of boars. Acta Endocrinol (Copenh). 94:404-411.
  8. Conley, A. J., C. J. Corbin, M. M. Hinshelwood, Z. Liu, E. R. Simpson, J. J. Ford and N. Harada. 1996. Functional aromatase expression in porcine adrenal gland and testis. Biol. Reprod. 54:497-505. https://doi.org/10.1095/biolreprod54.2.497
  9. Corbin, C. J., M. W. Khalil and A. J. Conley. 1995. Functional ovarian and placental isoforms of porcine aromatase. Mol. Cell Endocrinol. 113:29-37. https://doi.org/10.1016/0303-7207(95)03607-9
  10. Doumit, M. E., D. R. Cook and R. A. Merkel. 1996. Testosterone up-regulates androgen receptors and decreases differentiation of porcine myogenic satellite cells in vitro. Endocrinol. 137:1385-1394. https://doi.org/10.1210/en.137.4.1385
  11. Gaucher, E. A., L. G. Graddy, T. Li, R. C. Simmen, F. A. Simmen, D. R. Schreiber, D. A. Liberles, C. M. Janis and S. A. Benner. 2004. The planetary biology of cytochrome P450 aromatases. BMC Biol. 2:19. https://doi.org/10.1186/1741-7007-2-19
  12. Haeussler, S., A. Wagner, H. Welter and R. Claus. 2007. Changes of testicular aromatase expression during fetal development in male pigs (Sus scrofa). Reprod. 133:323-330. https://doi.org/10.1530/rep.1.01169
  13. Hilleson-Gayne, C. K. and J. A. Clapper. 2005. Effects of decreased estradiol-17beta on the serum and anterior pituitary IGF-I system in pigs. J. Endocrinol. 187:369-378. https://doi.org/10.1677/joe.1.06253
  14. Isomaa, V., M. Orava and R. Vihko. 1987. Evidence for an androgen receptor in porcine Leydig cells. Acta Endocrinol (Copenh). 115:119-124.
  15. Johnson, B. J., P. T. Anderson, J. C. Meiske and W. R. Dayton. 1996. Effect of a combined trenbolone and estradiol implant on steroid hormone levels, feedlot performance, carcass characteristics and carcass composition of feedlot steers. J. Anim. Sci. 74:363-371. https://doi.org/10.2527/1996.742363x
  16. Kao, Y. C., T. Higashiyama, X. Sun, T. Okubo, C. Yarborough, I. Choi, Y. Osawa, F. A. Simmen and S. Chen. 2000. Catalytic differences between porcine blastocyst and placental aromatase isozymes. Eur. J. Biochem. 267:6134-6139. https://doi.org/10.1046/j.1432-1327.2000.01705.x
  17. Khalil, M. W., N. Chung, P. Morley and M. A. Glasier. 1988. Armstrong DT. Formation and metabolism of 5(10)-estrene-3 beta, 17 beta-diol, a novel 19-norandrogen produced by porcine granulosa cells from C19 aromatizable androgens. Biochem. Biophys. Res. Commun. 155:144-150. https://doi.org/10.1016/S0006-291X(88)81061-1
  18. Khalil, M. W. and J. S. Walton. 1985. Identification and measurement of 4-oestren-3,17-dione (19-norandrostenedione) in porcine ovarian follicular fluid using high performance liquid chromatography and capillary gas chromatography-mass spectrometry. J. Endocrinol. 107:375-381. https://doi.org/10.1677/joe.0.1070375
  19. Kuhn, C. M. 2002. Anabolic steroids. Recent Prog Horm Res. 57:411-34. https://doi.org/10.1210/rp.57.1.411
  20. Lee, E. J., J. Choi, J. H. Hyun, K. H. Cho, I. Hwang, H. J. Lee, J. Chang and I. Choi. 2007. Steroid Effects on Cell Proliferation, Differentiation and Steroid Receptor Gene Expression in Adult Bovine Satellite Cells. Asian-Aust. J. Anim. Sci. 20:501-510. https://doi.org/10.5713/ajas.2007.501
  21. Martin, M. M., P. W. Andrews and D. P. Hornby. 2002. Multidimensional differential display via ion-pair reservedphase denaturing high-performance liquid chromatography. Analytical Biochemistry 304:47-54. https://doi.org/10.1006/abio.2001.5563
  22. Mutembei, H. M., S. Pesch, G. Schuler and B. Hoffmann. 2005. Expression of oestrogen receptors alpha and beta and of aromatase in the testis of immature and mature boars. Reprod. Domest Anim. 40:228-236. https://doi.org/10.1111/j.1439-0531.2005.00586.x
  23. Oh, Y. S., S. B. Cho, K. H. Baek and C. B. Choi. 2005. Effects of testosterone, 17$\beta$-estradiol, and progesterone on the differentiation of bovine intramuscular adipocytes. Asian-Aust. J. Anim. Sci. 18:1589-1593. https://doi.org/10.5713/ajas.2005.1589
  24. Raeside, J. I., R. M. Friendship and O. E. Vrablic. 1997. Effects of castration on early postnatal development of male accessory sex glands in the domestic pig. J. Endocrinol. 137:287-292. https://doi.org/10.1530/eje.0.1370287
  25. Raeside, J. I., R. L. Renaud and R. M. Friendship. 1989. Aromatization of 19-norandrogens by porcine Leydig cells. J. Steroid Biochem. 32:729-735. https://doi.org/10.1016/0022-4731(89)90520-7
  26. Schwarzenberger, F., G. S. Toole, H. L. Christie and J. I. Raeside. 1993. Plasma levels of several androgens and estrogens from birth to puberty in male domestic pigs. Acta Endocrinol (Copenh). 128:173-177.
  27. Singh, R., J. N. Artaza, W. E. Taylor, N. F. Gonzalez-Cadavid and S. Bhasin. 2003. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinol. 144:5081-5088. https://doi.org/10.1210/en.2003-0741
  28. Slomczynska, M. and Z. Tabarowski. 2001. Localization of androgen receptor and cytochrome P450 aromatase in the follicle and corpus luteum of the porcine ovary. Anim. Reprod. Sci. 65:127-134. https://doi.org/10.1016/S0378-4320(00)00225-6
  29. Suryawan, A., L. V. Swanson and C. Y. Hu. 1997. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. J. Anim. Sci. 75:105-111. https://doi.org/10.2527/1997.751105x
  30. Tarleton, B. J., T. D. Braden, A. A. Wiley and F. F. Bartol. 2003. Estrogen-induced disruption of neonatal porcine uterine development alters adult uterine function. Biol. Reprod. 68:1387-1393. https://doi.org/10.1095/biolreprod.102.011346
  31. Wierman, M. E. 2007. Sex steroid effects at target tissues: mechanisms of action. Adv. Physiol. Educ. 31:26-33. https://doi.org/10.1152/advan.00086.2006
  32. Yeh, S., M. Y. Tsai, Q. Xu, X. M. Mu, H. Lardy, K. E. Huang, H. Lin, S. D. Yeh, S. Altuwaijri, X. Zhou, L. Xing, B. F. Boyce, M. C. Hung, S. Zhang, L. Gan and C. Chang. 2002. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc. Natl. Acad. Sci. USA. 99:13498-13503 https://doi.org/10.1073/pnas.212474399

Cited by

  1. Effects of porcine testis extract on wound healing in rat vol.16, pp.6, 2012, https://doi.org/10.1080/19768354.2012.726645
  2. cDNA Microarray Analysis of Differential Gene Expression in Boar Testes during the Prepubertal Period vol.22, pp.8, 2007, https://doi.org/10.5713/ajas.2009.90009