• Title/Summary/Keyword: armor

Search Result 235, Processing Time 0.027 seconds

Ballistic Resistance Performance of Kevlar Fabric Impregnated with Shear Thickening Fluid (전단농화유체가 함침된 Kevlar 재료의 방탄특성)

  • Song, Heung-Sub;Yoon, Byung-Il;Kim, Chang-Yun;Park, Jong-Lyul;Kang, Tae-Tin
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • Manufacturing process of the shear thickening fluid(STF) and evaluation of the ballistic penetration resistance performance of the Kevlar-STF composites were studied. STF was made from silica and ethylene glycol, and the Kevlar-STF composite was made by impregnating the STF into the Kevlar fabric. Specimens including neat Kevlar woven fabrics and Kevlar-STF composites with two types of silica were prepared and carried out the ballistic tests. From the results STFs represented shear thickening behavior irrespective of the silica type, and Kevlar-STF composite with spherical silica showed best ballistic penetration resistance performance among them. Especially the specimens of Kevlar-STF composites with spherical silica showed radial fiber deformation by the projectile during the tests, that was somewhat different deformation behavior from those of the neat Kevlar fabrics shown fiber pull-out phenomena or fracture.

Estimation of Residual Useful Life and Tracking of Real-time Damage Paths of Rubble-Mound Breakwaters Using Stochastic Wiener Process (추계학적 위너 확률과정을 이용한 경사제의 실시간 피해경로 추적과 잔류수명 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.147-160
    • /
    • 2020
  • A stochastic probabilistic model for harbor structures such as rubble-mound breakwater has been formulated by using the generalized Wiener process considering the nonlinearity of damage drift and its nonlinear uncertainty, by which the damage path with real-time can be tracked, the residual useful lifetime at some age can also be analyzed properly. The formulated stochastic model can easily calculate the probability of failure with the passage of time through the probability density function of cumulative damage. In particular, the probability density functions of residual useful lifetime of the existing harbor structures can be derived, which can take into account the current age, its present damage state and the future damage process to be occurred. By using the maximum likelihood method and the least square method together, the involved parameters in the stochastic model can be estimated. In the calibration of the stochastic model presented in this paper, the present results are very well similar with the results of MCS about tracking of the damage paths as well as evaluating of the density functions of the cumulative damage and the residual useful lifetime. MTTF and MRL are also evaluated exactly. Meanwhile, the stochastic probabilistic model has been applied to the rubble-mound breakwater. The related parameters can be estimated by using the experimental data of the cumulative damages of armor units measured as a function of time. The theoretical results about the probability density function of cumulative damage and the probability of failure are very well agreed with MCS results such that the density functions of the cumulative damage tend to move to rightward and the amounts of its uncertainty are increased as the elapsed time goes on. Thus, the probabilities of failure with the elapsed time are also increased sharply. Finally, the behaviors of residual useful lifetime have been investigated with the elapsed age. It is concluded for rubble-mound breakwaters that the probability density functions of residual useful lifetime tends to have a longer tail in the right side rather than the left side because of the gradual increases of cumulative damage of armor units. Therefore, its MRLs are sharply decreased after some age. In this paper, the special attentions are paid to the relationship of MTTF and MRL and the elapsed age of the existing structure. In spite of that the sum of the elapsed age and MRL must be equal to MTTF deterministically, the large difference has been shown as the elapsed age is increased which is due to the uncertainty of cumulative damage to be occurred in the future.

Prediction of Expected Residual Useful Life of Rubble-Mound Breakwaters Using Stochastic Gamma Process (추계학적 감마 확률과정을 이용한 경사제의 기대 잔류유효수명 예측)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.158-169
    • /
    • 2019
  • A probabilistic model that can predict the residual useful lifetime of structure is formulated by using the gamma process which is one of the stochastic processes. The formulated stochastic model can take into account both the sampling uncertainty associated with damages measured up to now and the temporal uncertainty of cumulative damage over time. A method estimating several parameters of stochastic model is additionally proposed by introducing of the least square method and the method of moments, so that the age of a structure, the operational environment, and the evolution of damage with time can be considered. Some features related to the residual useful lifetime are firstly investigated into through the sensitivity analysis on parameters under a simple setting of single damage data measured at the current age. The stochastic model are then applied to the rubble-mound breakwater straightforwardly. The parameters of gamma process can be estimated for several experimental data on the damage processes of armor rocks of rubble-mound breakwater. The expected damage levels over time, which are numerically simulated with the estimated parameters, are in very good agreement with those from the flume testing. It has been found from various numerical calculations that the probabilities exceeding the failure limit are converged to the constraint that the model must be satisfied after lasting for a long time from now. Meanwhile, the expected residual useful lifetimes evaluated from the failure probabilities are seen to be different with respect to the behavior of damage history. As the coefficient of variation of cumulative damage is becoming large, in particular, it has been shown that the expected residual useful lifetimes have significant discrepancies from those of the deterministic regression model. This is mainly due to the effect of sampling and temporal uncertainties associated with damage, by which the first time to failure tends to be widely distributed. Therefore, the stochastic model presented in this paper for predicting the residual useful lifetime of structure can properly implement the probabilistic assessment on current damage state of structure as well as take account of the temporal uncertainty of future cumulative damage.

Simplified Method for Estimation of Mean Residual Life of Rubble-mound Breakwaters (경사제의 평균 잔류수명 추정을 위한 간편법)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.2
    • /
    • pp.37-45
    • /
    • 2022
  • A simplified model using the lifetime distribution has been presented to estimate the Mean Residual Life (MRL) of rubble-mound breakwaters, which is not like a stochastic process model based on time-dependent history data to the cumulative damage progress of rubble-mound breakwaters. The parameters involved in the lifetime distribution can be easily estimated by using the upper and lower limits of lifetime and their likelihood that made a judgement by several experts taking account of the initial design lifetime, the past sequences of loads, and others. The simplified model presented in this paper has been applied to the rubble-mound breakwater with TTP armor layer. Wiener Process (WP)-based stochastic model also has been applied together with Monte-Carlo Simulation (MCS) technique to the breakwater of the same condition having time-dependent cumulative damage to TTP armor layer. From the comparison of lifetime distribution obtained from each models including Mean Time To Failure (MTTF), it has found that the lifetime distributions of rubble-mound breakwater can be very satisfactorily fitted by log-normal distribution for all types of cumulative damage progresses, such as exponential, linear, and logarithmic deterioration which are feasible in the real situations. Finally, the MRL of rubble-mound breakwaters estimated by the simplified model presented in this paper have been compared with those by WP stochastic process. It can be shown that results of the presented simplified model have been identical with those of WP stochastic process until any ages in the range of MTT F regardless of the deterioration types. However, a little of differences have been seen at the ages in the neighborhood of MTTF, specially, for the linear and logarithmic deterioration of cumulative damages. For the accurate estimation of MRL of harbor structures, it may be desirable that the stochastic processes should be used to consider properly time-dependent uncertainties of damage deterioration. Nevertheless, the simplified model presented in this paper can be useful in the building of the MRL-based preventive maintenance planning for several kinds of harbor structures, because of which is not needed time-dependent history data about the damage deterioration of structures as mentioned above.

Development of a Stability Formula for Tetrapod by Using M5' Model Tree (M5' Model Tree를 이용한 Tetrapod 안정식 개발)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.138-146
    • /
    • 2013
  • Tetrapod, one of the famous armor blocks for rubble mound breakwaters, has been widely used in the world. In order to evaluate the required weight of Tetrapod, many researchers have proposed various stability formulas. Since the stability formulas were proposed by curve-fitting the experimental data, some uncertainties are included in the formulas. The main uncertainties are associated with experimental data, derivation of the formula, and variability of the design variables. In this study, a new stability formula is developed by using M5' model tree, which reduces the uncertainty in the derivation of the formula. The index of agreement is used to evaluate the performance of the developed formula. The index of agreement for the new formula is higher by about 0.1 than the previous formula. The performance of the previous formula was not good when the predicted stability number is greater than about 3.0. However. the new formula is accurate regardless of the magnitude of stability number. As a result, the new formula performs better than the previous formula, while expressed in the form of a tree but still in an explicit form.

Development of Stochastic Decision Model for Estimation of Optimal In-depth Inspection Period of Harbor Structures (항만 구조물의 최적 정밀점검 시기 추정을 위한 추계학적 결정모형의 개발)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.63-72
    • /
    • 2016
  • An expected-discounted cost model based on RRP(Renewal Reward Process), referred to as a stochastic decision model, has been developed to estimate the optimal period of in-depth inspection which is one of critical issues in the life-cycle maintenance management of harbor structures such as rubble-mound breakwaters. A mathematical model, which is a function of the probability distribution of the service-life, has been formulated by simultaneously adopting PIM(Periodic Inspection and Maintenance) and CBIM(Condition-Based Inspection and Maintenance) policies so as to resolve limitations of other models, also all the costs in the model associated with monitoring and repair have been discounted with time. From both an analytical solution derived in this paper under the condition in which a failure rate function is a constant and the sensitivity analyses for the variety of different distribution functions and conditions, it has been confirmed that the present solution is more versatile than the existing solution suggested in a very simplified setting. Additionally, even in that case which the probability distribution of the service-life is estimated through the stochastic process, the present model is of course also well suited to interpret the nonlinearity of deterioration process. In particular, a MCS(Monte-Carlo Simulation)-based sample path method has been used to evaluate the parameters of a damage intensity function in stochastic process. Finally, the present stochastic decision model can satisfactorily be applied to armor units of rubble mound breakwaters. The optimal periods of in-depth inspection of rubble-mound breakwaters can be determined by minimizing the expected total cost rate with respect to the behavioral feature of damage process, the level of serviceability limit, and the consequence of that structure.

Effect of Wave-Induced Seepage on the Stability of the Rubble Mound Breakwater (동적 파랑에 의한 침투류가 사석경사식 방파구조물의 안정성에 미치는 영향)

  • Hwang, Woong-Ki;Kim, Tae-Hyung;Kim, Do-Sam;Oh, Myounghak;Park, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.13-27
    • /
    • 2018
  • To study how stable the rubble mound breakwaters are, one can look to the research of wave induced seepage flow through the pores of the rubble mound. Seepage flow is generally generated by the difference between the water level around the breakwater during a typhoon. The existing stability analysis method of the rubble mound is the static analysis which simply considers the force equilibrium taking into account the horizontal force acting on the concrete block induced by a wave (calculated by Goda equation) and the vertical force induced by the weight inclusive of the concrete block, quarry run, filter, and armor layer above the slipping plane. However, this static method does not consider the wave-induced seepage flow in the rubble mound. Such seepage may decrease the stability of the rubble mound. The stability of a rubble mound breakwater under the action of seepage was studied based on the results of CFD software (OpenFOAM) and Limit Equilibrium Method (GeoStudio). The numerical analysis result showed that the seepage flow decreased the stability of the rubble mound breakwaters. The results of the numerical analyses also revealed the stability of the rubble mound was varied with time. Especially, the most critical state happened at the condition of overtopping the concrete block, acting strong uplift pressure raising along side and underneath the concrete block, and generating high pore pressure inside rubble mound due to seepage flow. Therefore, it may be necessary to conduct a dynamic analysis considering the effect of wave-induce seepage flow together with the static analysis.

Effect of TiB2 Coating on the Mechanical Properties of B4C/Al Composites Prepared by Infiltration Process (TiB2코팅이 함침법으로 제조되는 B4C/Al 복합체의 기계적 특성에 미치는 영향)

  • 김선혜;임경란;심광보;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.777-783
    • /
    • 2003
  • The mechanical properties of B$_4$C/Al composites normally depend on the species and quantity of reaction products between B$_4$C and Al and then the control of reaction products is necessary to make desirable composites for lightweight advanced or armor materials. TiB$_2$ is chemically inert with aluminum and has a lower contact angle (85$^{\circ}$ at 100$0^{\circ}C$) to liquid aluminum than B$_4$C. Thus, TiB$_2$ coating on B$_4$C may lower infiltration temperature of aluminum when the B$_4$C/Al composites is fabricated by infiltration process. In this study, the effects of TiB$_2$ on the microstructure and mechanical properties of the B$_4$C/Al composites have been investigated. TiB$_2$ coated B$_4$C powder was prepared using the sol-gel technique. It was found that the B$_4$C surface is homogeneously covered with TiB$_2$ having a particles size of 20-50 nm. While the B$_4$C/Al composites prepared by infiltration after TiB$_2$ coating had 17 wt% of unreacted Al, on the other hand, the B$_4$C/Al composites without coating included 14 wt% of Al. As a result, the composites infiltrated after the coating showed higher fracture toughness and lower hardness. This strongly suggests that TiB$_2$ not only lowers the infiltration temperature, but also inhibits the reaction between B$_4$C and Al.

Estimation of Partial Safety Factors and Target Failure Probability Based on Cost Optimization of Rubble Mound Breakwaters (경사식 방파제의 비용 최적화에 기초한 부분안전계수 및 목표파괴확률 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Burcharth, Hans F.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.191-201
    • /
    • 2010
  • The breakwaters are designed by considering the cost optimization because a human risk is seldom considered. Most breakwaters, however, were constructed without considering the cost optimization. In this study, the optimum return period, target failure probability and the partial safety factors were evaluated by applying the cost optimization to the rubble mound breakwaters in Korea. The applied method was developed by Hans F. Burcharth and John D. Sorensen in relation to the PIANC Working Group 47. The optimum return period was determined as 50 years in many cases and was found as 100 years in the case of high real interest rate. Target failure probability was suggested by using the probabilities of failure corresponding to the optimum return period and those of reliability analysis of existing structures. The final target failure probability is about 60% for the initial limit state of the national design standard and then the overall safety factor is calculated as 1.09. It is required that the nominal diameter and weight of armor are respectively 9% and 30% larger than those of the existing design method. Moreover, partial safety factors considering the cost optimization were compared with those calculated by Level 2 analysis and a fairly good agreement was found between the two methods especially the failure probability less than 40%.

Calculation of Stability Number of Tetrapods Using Weights and Biases of ANN Model (인공신경망 모델의 가중치와 편의를 이용한 테트라포드의 안정수 계산 방법)

  • Lee, Jae Sung;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2016
  • Tetrapod is one of the most widely used concrete armor units for rubble mound breakwaters. The calculation of the stability number of Tetrapods is necessary to determine the optimal weight of Tetrapods. Many empirical formulas have been developed to calculate the stability number of Tetrapods, from the Hudson formula in 1950s to the recent one developed by Suh and Kang. They were developed by using the regression analysis to determine the coefficients of an assumed formula using the experimental data. Recently, software engineering (or machine learning) methods are introduced as a large amount of experimental data becomes available, e.g. artificial neural network (ANN) models for rock armors. However, these methods are seldom used probably because they did not significantly improve the accuracy compared with the empirical formula and/or the engineers are not familiar with them. In this study, we propose an explicit method to calculate the stability number of Tetrapods using the weights and biases of an ANN model. This method can be used by an engineer who has basic knowledge of matrix operation without requiring knowledge of ANN, and it is more accurate than previous empirical formulas.