• Title/Summary/Keyword: armA

Search Result 4,124, Processing Time 0.038 seconds

An anti-ARM technique using decoy antennas (디코이 안테나를 이용한 레이다의 ARM 방어 기술)

  • Chae, Gyoo-Soo;Lim, Joong-Soo;Kim, Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2646-2650
    • /
    • 2009
  • This paper describes an anti-ARM technique using multiple decoy antennas. We investigate the radar and decoy antenna signal received at the ARM receiver to verify the effect of decoy antennas. And we develop a simulation program using Matlab for optimum positions of the decoys and the effect of ARM by distance between decoys. We suggest optimum positions and distance between decoys based on our simulation results.

Profile Guided Selection of ARM and Thumb Instructions at Function Level (함수 수준에서 프로파일 정보를 이용한 ARM과 Thumb 명령어의 선택)

  • Soh Changho;Han Taisook
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.227-235
    • /
    • 2005
  • In the embedded system domain, both memory requirement and energy consumption are great concerns. To save memory and energy, the 32 bit ARM processor supports the 16 bit Thumb instruction set. For a given program, the Thumb code is typically smaller than the ARM code. However, the limitations of the Thumb instruction set can often lead to generation of poorer quality code. To generate codes with smaller size but a little slower execution speed, Krishnaswarmy suggests a profiling guided selection algorithm at module level for generating mixed ARM and Thumb codes for application programs. The resulting codes of the algorithm give significant code size reductions with a little loss in performance. When the instruction set is selected at module level, some functions, which should be compiled in Thumb mode to reduce code size, are compiled to ARM code. It means we have additional code size reduction chance. In this paper, we propose a profile guided selection algorithm at function level for generating mixed ARM and Thumb codes for application programs so that the resulting codes give additional code size reductions without loss in performance compared to the module level algorithm. We can reduce 2.7% code size additionally with no performance penalty

Design and Control of a Wearable Robot (Wearable Robot Arm의 제작 및 제어)

  • Jeong, Youn-Koo;Kim, Yoon-Kyong;Kim, Kyung-Hwan;Park, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.277-282
    • /
    • 2001
  • As human-friendly robot techniques improve, the concept of the wearability of robotic arms becomes important. A master arm that detects human arm motion and provides virtual forces to the operator is an embodied concept of a wearable robotic arm. In this study, we design a 7 DOF wearable robotic arm with high joint torques. An operator wearing this robotic arm can move around freely because this robotic arm was designed to have its fixed point at the shoulder part of the operator. The proposed robotic arm uses parallel mechanisms at the shoulder part and the wrist part on the model of the human muscular structure of an upper limb. To reduce the computational load in solving the forward kinematics and to prevent singularity motions of the parallel mechanism, yawing motion of the parallel mechanisms was separated using a slip ling mechanism. The total weight of the proposed robotic arm is about 4 kg. An experimental result of force tracking test for the pneumatic control system and an application example for VR robot are described to show the validity of the robot.

  • PDF

Statistical Assessment of Biosimilarity based on the Relative Distance between Follow-on Biologics in the (k + 1)-Arm Parallel Design

  • Kang, Seung-Ho;Shin, Wooyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.605-613
    • /
    • 2015
  • A three-arm parallel design has been proposed to assess the biosimilarity between a biological product and a reference product using relative distance (Kang and Chow, 2013). The three-arm parallel design consists of two arms for the reference product and one arm for the biosimilar product. This paper extended the three-arm parallel design to a (k + 1)-arm parallel design composed of k (${\geq}3$) arms for the reference product and one arm for the biosimilar product. A new relative distance was defined based on Euclidean distance; consequently, a corresponding test procedure was developed based on asymptotic distribution. Type I error rates and powers were investigated both theoretically and empirically.

Design of a Torque Arm Pin and Elastomeric Bushings for the Three-point-Suspension Gearbox of a Wind Turbine (풍력발전기용 3점 지지 기어박스의 토크암 핀 및 탄성중합체 부싱 설계)

  • Shim, Sung Bo;Nam, Ju Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, analytical methods for designing a torque arm pin and elastomeric bushings of a conventional-type three-point-suspension gearbox of a wind turbine are investigated. The design loads for the torque arm were derived by considering the effects of the transmitted torque and self-weight of the gearbox. Based on the design loads, design methods for the torque arm pin and elastomeric bushings were introduced in the terms of material and size selection. Finally, a small-scale conventional-type gearbox was designed by applying the derived design methods. This study is an elementary and analytical study for the design of the torque arm pin and elastomeric bushings. It is necessary to verify and supplement the results further through extensive experimentation.

Study on the Collision Avoidance of a Redundant Robot Arm Using Fuzzy Control (퍼지 제어기를 이용한 여유자유도 로봇 팔의 장애물 우회에 관한 연구)

  • 황재석;박찬호;이병룡;양순용;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.345-348
    • /
    • 1997
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During the motion, if there exists no obstacle, the end-effecter of the robot arm moves along the pre-defined path. But if there exists an obstacle and close to the robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture for collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sizes of obstacles. It was concluded that the proposed algorithm gives a good performance for obstacle avoidance.

  • PDF

The Influence of Restricted Arm Swing on Symmetry, Movement of Trunk and Pelvis Rotation according to Using a Mobile Phone

  • Chu, Jae-Hyeung;Kim, Yun-Jin;Ko, Yu-Min;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Purpose: This study was conducted to investigate the effects of variations in arm swing during gait on movement of the trunk and pelvis. During the gait task, the angle of the trunk and pelvic rotation were analyzed according to arm swing conditions. Methods: Seventeen healthy males participated in this study. All subjects were analyzed for gait on a treadmill three times each under three different types of arm swing conditions - natural arm swing, restricted arm swing using a phone, restricted swing in both arms. 3-D motion analysis systems were used to collect and analyze the kinematic data of trunk and pelvic movements, and repeated one-way ANOVA was used to compare the trunk and pelvic kinematic data and symmetry index. The level of significance was ${\alpha}=0.05$. Results: The results showed kinematic differences in trunk and pelvic during gait based on the arm swing conditions. Specifically, there were significant differences in trunk rotation, left and right trunk rotation and symmetry index of trunk rotation during gait among the three arm swing conditions. ROM was used to calculate a symmetry index (SI) based on the average left and right trunk rotation in which a value closer to zero indicated better balance. The SI obtained for arm swing restricted with the phone was closer to -1 than the other conditions. Conclusion: Restricted arm swing due to use of a phone had the possibility to induce instability of postural control while walking, which could be seen to suggest a risk of falling during gait.

A Clothing-Ergonomics Study on the Variation of Upper Arm Skin Surface According to Arm Movements - on the arm movements to the vertical direction in front and in side - (신체동작에 따른 상지형태변화에 관한 피복인간공학적 연구 - 전방수직동작과 측방수직동작을 중심으로 -)

  • Kim Hae-Kyung;Park Eun-Joo;Jeon Eun-Kyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.1 s.29
    • /
    • pp.49-58
    • /
    • 1989
  • A clothing-erogonomics study was performed to investigate the difference of the upper arm skin skin surface and the relationship among the three aspects of upper arm (height of sleeve rap, sleeve width and armhole girth) by changing arm movements. Plaster cast was used for this experimental research. Arm movements consist of 9 types; just carmly standing on ($0^{\circ}$), and each 4 types ($45^{\circ},\;90^{\circ},\;135^{\circ},\;180^{\circ}$) to the vertical direction in front and in side. The results were as follows; 1) As the arm-movement angle increased, the height of sleeve cap decreased and that ratio was largest in the portion A-B3. 2) The steeve width was enlarged with the increment of movement angle in all portions of upper arm except B1-B5. 3) As increasing the movement angle, the whole armhole girth decreased and the ratio o(front armhole girth (F-A) was larger than that of back. 4) In the vertical direction in front, the height o( the sleeve caps was larger, the sleeve widths were smaller than in the vertical direction in side in all movement types, but there was no significant difference in arm-hole girth between the two cases. 5) There were significantly negative relationships between measurements in height of sleeve cap and those in sleeve width, and also between those in height of sleeve cap and in arm-hole girth. And significantly positive relationships were found between neasurements in height of sleeve cap and those in arm-hole girth.

  • PDF

Design and Control of Industrial Dual Arm Robot (산업용 양팔로봇의 설계 및 제어)

  • Park, Chan-Hun;Park, Kyoung-Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.58-65
    • /
    • 2008
  • The study on dual arm robot manipulator which consists of two 6-DOF srms and one 2-DOF torso is introduced. This dual arm robot manipulator is designed for automation of assembly process in automotive manufacturing line. Each industrial 6-DOF arm can be used as a stand-alone type of industrial robot manipulator with 6-DOF and as a manipulator part of dual arm robot at the same lime. These structures help the robot maker willing to succeed in emerging market of dual arm robots have the high competitive power for the current industrial robot market and the emerging market of dual arm robot at the same time. The research results of the design concept, workspace analysis and the PC-based controller will be introduced.

A Study on the Performance Analysis of the Dual-arm Robot for the Assembly Task (조립 공정에서 양팔 로봇의 구조에 따른 작업성 평가 방법 연구)

  • Kim, Gi-Hoon;Park, Dong Il;Park, Jong-Woo;Kim, Hwi-Su;Cho, Youngsoo;Jung, Won-suk
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.164-171
    • /
    • 2022
  • Recently, interest of a dual arm robot which can replace humans is increasing in order to improve the working environment and solve the labor shortage. Various studies related with design and analysis of dual-arm robots have been conducted because dual arm robots can have various kinematic configurations according to the objective task. It is necessary to evaluate the work performance according to various kinematic structures of the dual arm robot to maximize its effectiveness. In the paper, the performance analysis is studied according to the shoulder configuration and the wrist configuration of the dual-arm robot by using main performance indices such as manipulability, condition number, and minimum singular value by assigning proper weight values to each objective motion. Performance analysis for the robotic assembly process is effectively carried out for each representative dual arm robot configuration.