• Title/Summary/Keyword: arm position

Search Result 485, Processing Time 0.022 seconds

Tip Position Control of Flexible Robot Manipulators Using 2-DOF Controller with Sliding Mode (슬라이딩 모드를 가진 2-자유도 제어기를 이용한 유연한 로봇 조작기의 끝점 위치 제어)

  • 신효필;이종광;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.471-477
    • /
    • 2000
  • The position control accuracy of a robot arm is significantly deteriorated when a long arm robot is operated at a high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system should be designed with its elastic modes taken into account. In this paper, the tip position control scheme of a one-link flexible manipulator using 2-DOF controller with sliding mode is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and a CCD camera as a vision sensor for on-line measuring the tip deflection of the flexible m. Simulation and experimental results of the flexible manipulator with a proposed controller are provided to show the effectiveness of the controller.

  • PDF

Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control (힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.

Tip vibration control of a single-link flexible robot arm under translational motion

  • Lee, Seong-Cheol;Cheong, Hoon;Chonan, Seiji;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.607-612
    • /
    • 1992
  • This paper presents a tip position control of a single-link flexible arm with a payload by using closed loop control. The shifting problem of the arm from the initial position to desired position is considered by the variation of the displacement gain $G_{p}$ and velocity gain $G_{v}$. The system is composed of a flexible arm with payload, DC servomotor, and a ballscrew mechanism. The flexible arm is mounted on a mobile stage driven by a servomotor and ballscrew. As a result, the increase of the displacement and velocity gain respectively comes to the reduction of tip vibration. Theoretical results are approximately in good agreement with those obtained experimentally.y.y.

  • PDF

End-point control of a flexible arm under base fluctuation

  • Chonan, Seiji;Sato, Hidehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.600-605
    • /
    • 1989
  • A theoretical study is presented for the end-point holding control of a one-link flexible arm, whose base is subjected to a lateral fluctuation. The arm is clamped on a rigid hub mounted directly on the shaft of d.c. servomoter. The tip position is measured by a gap sensor fixed in space isolated from the system vibration. The arm is controlled so as to make the end point stay precisely at its initial position even if the base is fluctuated.

  • PDF

A Comparision of the Radiation dose by Distance and the Direction according to a Tube Position of the C-arm Unit (C-arm의 Tube 위치에 따른 거리 및 방향별 피폭선량 비교)

  • Kim, Jin-Su;Woo, Bong-Cheol;Kim, Sung-Jin;Lee, Kwan-Sup;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • In operation room, the use of the C-arm unit is increasing. So, the radiation dose of the person who work in operation room was even more increased than before. Thus, this study is shown the measurement of expose dose and the way for decrease of the radiation dose by using the C-arm unit. The experiment was performed with the C-arm unit and used a phantom which is similar to tissue of the human body and fluoro-glass dosimeter for dose measurement. The expose dose were measured by the tube position(over tube, under tube) of the C-arm unit, distance(50, 100$\sim$200cm), direction(I, II, III, IV), runtime(1min, 3min), wearing of the apron. The radiation dose was decreased twice and three times at under tube rather than over tube. The I direction was measured 20$\sim$30% more than the others. The biggest expose dose is 50cm from center on distance. The expose dose is decreased to far from center. In case of Wearing of the apron, the radiation dose was decreased 60$\sim$90% by the distance. But there weren't change of the radiation dose by C-arm tube position. In present, by increasing the usage of the C-arm unit, the radiation dose is inevitable. So, this study recommends us to use the under tube of the C-arm unit. Also, Wearing of the apron is required for minimum of the radiation exposure.

  • PDF

A Remote Control of 6 d.o.f. Robot Arm Based on 2D Vision Sensor (2D 영상센서 기반 6축 로봇 팔 원격제어)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.933-940
    • /
    • 2022
  • In this paper, the algorithm was developed to recognize hand 3D position through 2D image sensor and implemented a system to remotely control the 6 d.o.f. robot arm by using it. The system consists of a camera that acquires hand position in 2D, a computer that controls robot arm that performs movement by hand position recognition. The image sensor recognizes the specific color of the glove putting on operator's hand and outputs the recognized range and position by including the color area of the glove as a shape of rectangle. We recognize the velocity vector of end effector and control the robot arm by the output data of the position and size of the detected rectangle. Through the several experiments using developed 6 axis robot, it was confirmed that the 6 d.o.f. robot arm remote control was successfully performed.

APPLICATION OF INVERSE DUNAMICS FOR HYBRID TRANSLATIONAL POSITION/FORCE CONTROL OF A FLEXIBLE ROBOT ARM

  • Sasaki, Minoru;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.595-599
    • /
    • 1989
  • A new simple method for controlling compliant motions of a flexible robot arm is presented. The method aims at controlling translational tip motion, force and moment by directly computing the base motion or torque. A numerical inversion of Laplace transform is used to obtain the results in the time domain. The results show the effectiveness of the method for the hybrid translational position/force control of a flexible robot arm.

  • PDF

자기동조 퍼지 알고리즘에 의한 탄성 로보트 Arm 선단의 위치제어

  • 양길태;안상도;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.213-217
    • /
    • 1993
  • This paper presents an end-point of 1-link flexible robot arm with a tip-mass by using self-turning fuzzy algorithm. The arm is mounted on a translational mechanism driven by a ballscrew, whose rotation is controlled by CD servomotor. Tip position is controlled so that it follows a desired position. A feedback signal is composed of both the tip-displacement error and change in error. This paper gives the experimental tip responses according to the variations of tip-mass and beam-length, and also showes the effects of reducing the residual vibrations occuring at the end-point.

The multiple Control Law Design of the Variable Structure Control for Angular Position Control of the Robot Arm with an Indirect Driving Joint Using Balance of the Inertial Moment (관성모멘트의 균형을 이용하는 간접구동관절을 갖는 로보트아암의 각위치 제어를 위한 가변구조제어기의 다중 제어법칙 설계)

  • Kim, Joong-Wan;Kang, Dae-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.76-83
    • /
    • 1996
  • We have developed the unconventional robot arm which is composed of the two main parts, one is a ball screw and the other is a robot arm. The dynamic systems of the robot arm and ball screw are unstable systems coupled with each other. The ball screw mechanism is unstable system but controllable system. The robot arm's dynamics is quasi stable system when ball screw's angular position is zero, else, unstable system. Our system has the duality between stability and controllability at the view point of control. This duality causes difficulty to control of the robot arm using normal control law. We have investigated the location of the characteristic roots of the dynamic equation. And we have found out that the best condition for the control of the arm is quasi stable state. In this paper, we have proposed multiple control laws which are consist of three components to guarantee the stability and controllability simultaneously. The computer simulations were carried out based on VSC about the angular position control of the robot arm, and it is confirmed that the good performances could be obtained by using new controller.

  • PDF

Compensation for Position Control of a Robot Manipulator Using a Modified Disturbance Observer (DOB) based on an Accelerometer (가속도 센서기반의 변형된 외란 관측기를 이용한 로봇 매니퓰레이터의 위치 제어의 보상)

  • Bae, Yeong-Geol;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.462-467
    • /
    • 2013
  • This paper presents a modified disturbance observer (MDOB) for controlling two arms of a manipulator designed for a home service robot. The MDOB is slightly different from the original DOB in that it uses an accelerometer to measure acceleration of the robot arm. Then it uses the acceleration to estimate the disturbance to cancel out in the control loop. Relying on the acceleration information of the robot arm, a partial model-based control structure is formed. Experimental studies of position control of 2 DOF robot arm are conducted to evaluate the performance of the proposed position control by an MDOB method.