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End-Point Control of a Flexible Arm under Base Fluctuation

Seiji CHONAN and Hidehiro SATO

Department of Mechanical Engineering
Tohoku University
Sendai,Japan

A theoretical study
of a one-link flexible arm,
fluctuation. The arm

the shaft of d.c. servomoter.

is presented for the end-point holding control
whose base
is clamped on a rigid hub mounted directly on
The tip position is measured by a gap
sensor fixed in space isolated from the system vibration.

is subjected to a lateral

The arm is

controlled so as to make the end point stay precisely at its initial
position even if the base is fluctuated.

1 INTRODUCTION

With the development of technology,
lightweight manipulators are being
introduced in various technological
fields. In this case however, due to the
flexible oscillations appeared, the
assumption of rigid manipulator is no
longer applicable. To endure good
performance of the manipulator, it is
necessary to develop a control strategy
that takes into account the flexibility
of the manipulator, and many papers on
it have been published during the past
vears. Cannon and Schmitz (1984), Skaar
and Tucker (1986), Yuh (1987), Yoshida,
Shimogo and Inoshe (1988), Tahara and
Chonan (1988}, Yamaura and Ono (1988)
and Yigit, Scott and Ulsoy (1988)
studied the open-loop and the closed-
loop end-point controls of single-link
flexible manipulators. As for the multi-
link flexible arm, Book, Maizza Neto,
and Whitney (1975), Fukuda and Arakawa

(1987), Ower and Van De Vegte (1987),
Lee and Wang (1988) and Chonan and Umeno
(1989) investigated the in-plane

positioning of two-link arms with
distributed flexibility. In all those
papers attention has been directed to
the control of flexible arms working in
quiet circumstances. Robots performing
tasks in environments hazardous to human
workers are sometimes under the
influence of some sort of disturbance.
The manipulator working in the vicinity
of a forging machine is a typical
example of this kind, where the
manipulator task is disturbed by the
floor vibration. It appears, to the
authors' knowledge, that no work has
been done on the control of a flexible
arm under external disturbances. It is
in this context that the subject
discussed in this paper is that of the
end-point position control of a one-link
flexible arm, whose base is subjected to
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a lateral fluctuation. The arm is
controlled so as to make the end point
stay precisely at its initial position
even if the base is fluctuated. The
control strategy is tested by means of
simulations for the one-link flexible-
arm prototype in the authors’ Laboratory
of Tohoku University. It is shown that
PD control using the tip sensing and
base torquing is sufficient to make the
arm tip stay at its initial position
precisely.

2 FORMULATION OF THE PROBLEM

Figure 1 shows a slender flexible arm
whose one end is fixed onto the vertical
shaft of a d.c. servomotor via a hub of
radius r. The other end (x=L) is loaded
with a mass (payload). M and @ are the
bending moment and the shear force
acting on the arm cross-section. The
problem that follows is the control of
the arm so that the tip stays precisely
at its initial position even if the base

is distributed by the lateral
fluctuation f(t). The torque 7T applied
by the motor rotates the arm in the
horizontal plane.
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Fig.l Geometry of problem and co-
ordinates.

One assumes that Bernoulli-Euler
theory is adequate to describe the



flexural motion. In this case, the
equation of motion of the arm is
EI(1+cd/3t) (3"/3z")yw(x,t)
+pA(32/3t2)w(x,t)=0 (1)

where E is the Young'’'s modulus, p is the
mass density, I is the moment of
inertia, and A is the cross~-sectional
area, ¢ is the internal damping

coefficient of the arm, and t is time.

One next considers the boundary
conditions of the arm. One end of the
arm is clamped on a rigid hub of radius
r which is mounted on the vertical shaft
of the motor. The geometrical
consideration brings in

wi(r,t)=r(3/3x)w(r,t)+f (%)

Here, f(t)
displacement at the base of the arm.

(2)

is the fluctuation in the
The
equilibrium of moment around the motor
shaft is

Jm(ai/atzaz)w<r,t)=
EI(1+cd/3t) (3% /3z2)w(r,t)
~e(3%/3t3z)w(r,t)
~rEI(1+c3/3t) (3% /32 ) w(r,t)

+T (3)
Here,J, is the polar moment of inertia
of the motor shaft, and € 1is the
armature damping coefficient. The torque
T applied by the motor is given by
T—Ktia (4)
where 1, is the armature current and K.
the torque constant of the motor.

At the other end {(x=L), the arm is
fitted with a payload of mass M_ and
moment of inertia J_. The equilib{%a of
moment and force in ‘this case are

Jp(&’/atzax)w(L,t)=
“EI(l+cd/98t) (3%2/3z2)w(L,t)

-rpEI(1+ea/Bt)(33/Bx3)w(L,t) (s)
M (3%/3t%+r 3%/8t%3x)w(L,t)
=EI(1+ed/9¢t) (3%/3x* w(Ll,t) (6)

Here,r  is the distance between the arm
tip and the gravity center of payload.

To put the arm motion under control,
one has to prescribe the armature
current i in the motor circuit. As
mentioned about, the motor is driven so
as to make the arm tip stay precisely at
its initial position even if the base is
disturbed by the lateral fluctuation. To
this end, one compares the initial tip
position wy(=0) with the actual position
which is measured by a sensor fixed in
space isolated from the system
vibration. The tip position error is
used, together with the estimated tip
velocity, as the basis for applying
torque to the arm base through the
motor. The wequation of 1 to be
controlled is

a
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(La/Ra)(d/dt)za+1a
+(K'/Ha)(8z/3t3x)w(r,t)
=(Gy+G, (3/8¢)]

ug=(14r (3/35)1 0L, ¢) ) (7

Here,La is the motor inductance,Ra is
the circuit resistance, and XK' is the
back electromotive force constant, Gd
and G, are the displacement and the
velocity feedback gains of the servo

loop.
Equations (1)-(7) are the governing
equations for the problem under

consideration. In the following, one
will introduce the method of Laplace
transform w.r.t. time to solve the
equations. First one transforms equation
(1) assuming that the arm is resting
statically at t=0. Solving the resulted
equation, one has the transformed
displacement in the form

W(x,s)=asinfx+Bcosfx

+Ysinh&x+8coshix (8)
where
E*=<pAs?/EI(1+ce)
Here, s 1is the Laplace transform
parameter, a to 6§ are unknowns to be

determined from the boundary conditions.
Substituting equation (8) into the
transformed equations of (2)-(6), and
further introducing the transformed
current I, obtained from equation (7)
into the resulted equations, one has a
system of simultaneous algebraic
equations of the form

T
lag 1 (@, B,Y,61"=1F(5),0,0,007 (9
where F(s) is the transformed lateral
disp}apement of the arm base,
aggrt d=1,*,4, are given in the

Appendix. Substituting o to § determined
from equation (9) into equation (8)
results in

W(x,s)=(AasinEx+ABcos§x

+AYsinh£x+A6cosh£x)(l/A)F(s) (10)

Here, A=det (aij) ; Aq to Ag are the A's
with the first to_ fourth columns
replaced by (1,0,0,0] .

To get the final result, one needs to
fix the function F(s). Two cases are
considered. The first case is the one in
which the base is fluctuated as

flt)=FPysin’uwt, 0Lt<m/2w
=P, ,

The solution to this

m/2w<t (11)

input is

W(x,8)/Fo=(Aasin£x+ABcosEx
+AYsinh€z+A6cosh£x)(l/A)
x{(2w)?/25 8%+ (20) 2} }

X[l+exp{-Ts5/2W)]) (12)

The second case is the one in which the
fluctuation is given by



Flt)=Fosin’ut,
=0

0LtLm/Ww

s T/w<e (13)

The corresponding solution is

W(x,s)/Fo=(Aasin5x+ABcos£x
+AYsinh£x+Adcosh£x)(1/A)

x{(2w)%/2s(s8%+(2w) %)}

X[l-exp(-Ts/w)] (14)

In the
follow,
inversed
computer,
by Weeks

numerical examples that
equations (12) and (14) are
numerically by using the
following the method proposed

(1966).

3 NUMERICAL RESULTS AND DISCUSSIONS

The control strategy described thus
far has been examined by means of
simulations for the single-link
flexible-arm prototype in the Department
of Mechanical Engineering of Tohoku
University. The arm is an aluminum beam
with a rectangular cross-section of
thickness B and width H. The end-point
load is a disk of radius r_ and mass M_.
In this case, the moment of inertia gf
pay]oad about the diameter is given by
Jp=Mprp 2,4 The physical parameters
for the assembled system are as follows.

Flexible arm

F=6.57x10'"Pa
p=2.67x10°kg/m’
e=1.19x10 "s
B=1.19%10 *m
H=1.99%x10 °m
[=5.00%x10 'm

D.C.servomotor
Jm=4.9ox1o'5kgm2
£€=2.60x10 kgm?/s

La=1.sox1o'3n
R_=4.700
K'=1,77%x10"°
Kt=6.77xlo_2
r=2,00%x10 %m

Vvs/rad
Nm/A

Tip load
M =4,53%10
r_=2.00%10 *nm

r

hzkg

(15)

Figure 2 shows the base fluctuations

given by equations (11) and (13). (a) is
an example of the transient lateral
shift of the base,and (b) a typical
impulsive fluctuation.

Figures 3 through 6 show the response
of the arm when the fluctuation is given
by Figure (a). Figure 3 1is the
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Fig.2 Fluctuation of arm base. w=5T;
(a) f(t)=FPysinut (0gt<m/2w), =Fo
(T/20<t); (b) Ff(t)=Fosin wt (o<t<m/uw),
=0 (m/w<t) o

variation of the tip displacement with
an increasing displacement feedback gain

G,;, with the velocity feedback gain G
fixed at 0.7 As/m. The position w=0 1s
the commanded, initial tip position. The

motor rotates the arm base so that the
arm tip remains at its initial position.
Figure shows that the recovering of the
tip to the commanded position is not
improved even if the displacement
feedback gain is increased, further an
excess value of the gain even worsens
the convergence of the tip vibration.
Figure 4 shows the variation when the
velocity feedback gain is increased, It
is evident that the arm tip comes to the
initial position more rapidly with an
increase of G ,. However, the excess
value induces a higher mode vibration on

the arm as observed from the bottom
figure, which then interrupts on the
convergence of tip fluctuation. Hence it

is said that there are optimum values

for the feedback gains G, and G, to
achieve rapid shift of the arm tlp to
its commanded position.

Figure 5 shows the time variation of

tip displacement when the payload mass

is increased, where ) 1s the mass
rgtlo of the payload to the arm given by
A= =Mp/oA(L-r) It is founded that an
increased of M _ reduces the amplitude of
tip fluctuation but promotes the
duration of the vibration.

Figure 6 shows the time response of
the arm tip with the rate constant w
taken as a parameter. The speed of shift
at the arm base becomes greater with an
increase of w It is seen that the
settling time of arm is not affected by
w . A higher structural mode appears and
the tip vibration amplitude becomes
greater with an increase of w

Figures 7 to 10 show the time history
of the tip displacement when the arm
base is fluctuated as equation (13). The
tip comes to the final position in the
similar manner as the one observed in
figures 3 to 6 for a variation of tne

parameter Gd’ GV, A and w , which means

that the response of the arm tip
controlled by the present algorithm is
not much affected by the type of

disturbance fluctuating the base of the
arm.
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Fig.3 vVariation of arm tip displacement
with an increase of displacement feed-
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Fig.4 Variation of arm tip displacement
with an increase of velocity feedback
gain G . G,=50A/m; w=57; f(t)=Fosin’wt
(0Ltsm/2w), =Fy (m/2w<t).

w/Fy
o o
= N
—
-
>
b
>
]
je]
w

w/Fy

3 q

Time s

Fig.5 Variation of arm tip displacement
with an increase of payload mass M_.
Physical parameters (except M_) ar® as
shown in equation (15). A=M _/PA(L-r):

G ,=50A/m; G =0.7As/m; w=5T7; fit)y=
Fysin®wt (08t<m/2w), =Fo (n/2w<t).
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Fig.6 Variation of arm tip displacement
with an increase of rate constant ,
G,=50a/m; G _=0.7As/m; f(t)=Fypsinlwt
(G;t;ﬂ/2w), =Fo (m/2w<t),
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with an increase of velocity feedback
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Fig.9 Variation of arm tip displacement
with an increase of payload mass M
Physical parameters (except M ) aré as
shown in eguation (15). A=M_/BA(L-r);
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Fig.10 Varlatlon of arm tip displacement
w1th an increase of rate constant w.
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4 CONCLUSIONS

A control strategy has been tested
for the end point holding of a one-link
flexible arm whose base is distributed
by an unsteady lateral fluctuation. The
flexible-arm prototype at the Department
of Mechanical Engineering of Tohoku
University has been chosen for
developing a simulation study. Results
obtained can be summarized as follows.

(1) PD control using the endpoint
position sensing and base torquing is
sufficient to make the arm tip stay at
its initial position even if the base is
disturbed by the lateral fluctuation.

{2) For the arm controlled by the
present strategy, the time response of
the arm tip is not much affected by the
type of fluctuation disturbing the base
of the arm.

APPENDIX

The aij’s in equation (9) are given as
ay1=sinfr-Ercosfr
ay2=cosfr+Ersinfr
ays=sinhfr-Ercoshfr
aiuw=coshfr-Ersinhfr

a21={[(5a/Ra)s+l](Jms+€)
+KtK'/Ra)sEcos£r
+EIL(L /R ) 8+1] (L+es)E?
X (sinEr-Ercosfr)
+Kt(Gd+GvS)
X(sin€L+£rpcosEL)
azz=—{[(La/Ra)s+l](Jms+e)
+KtK'/Ra}s£sin£r
+EI[(La/Ra)s+1](l+cs)£2
x{cosfr+Ersinfr)
+Kt(Gd+Gvs)
X(cosEL-grpsinEL)
a23={[(La/Ra)s+1](Jms+€)
+KtK’/Ra}s€coshEr
—EI[(La/Ra)s+lI(1+cs)£2
x{(sinhEr-Ercoshir)
+Kt(Gd+Gv3)
X(sinhEL+£rpcoshEL)
azu={[(La/Ra)s+1](Jms+e)
+KtK'/Ra}sEsinhEr
—EI[(La/Ra)s+1](l+cs)£2
x(coshEr-Ersinhfr)
+Kt(Gd+Gvs)
x(cosh€L+£rpsinhEL)
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