• Title/Summary/Keyword: arithmetic unit

Search Result 167, Processing Time 0.029 seconds

A Construction of the Improved Hardware Arithmetic Operation Unit (개선된 하드웨어 산술연산기 구성)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1023-1024
    • /
    • 2015
  • This paper propose the method of constructing the improved hardware arithmetic operation unit over galois fields. The proposed the hardware arithmetic operation unit have advantage which is more regularity and extensibility compare with earlier method. Also it is able to apply to any multimedia hardware which is the basic arithmetic operation unit. For the future we will research the processor which is the processing arithmetic and logical operation.

  • PDF

A design of floating-point arithmetic unit for superscalar microprocessor (수퍼스칼라 마이크로프로세서용 부동 소수점 연산회로의 설계)

  • 최병윤;손승일;이문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1345-1359
    • /
    • 1996
  • This paper presents a floating point arithmetic unit (FPAU) for supescalar microprocessor that executes fifteen operations such as addition, subtraction, data format converting, and compare operation using two pipelined arithmetic paths and new rounding and normalization scheme. By using two pipelined arithmetic paths, each aritchmetic operation can be assigned into appropriate arithmetic path which high speed operation is possible. The proposed normalization an rouding scheme enables the FPAU to execute roundig operation in parallel with normalization and to reduce timing delay of post-normalization. And by predicting leading one position of results using input operands, leading one detection(LOD) operation to normalize results in the conventional arithmetic unit can be eliminated. Because the FPAU can execuate fifteen single-precision or double-precision floating-point arithmetic operations through three-stage pipelined datapath and support IEEE standard 754, it has appropriate structure which can be ingegrated into superscalar microprocessor.

  • PDF

Design of AMBA AX I Slave Unit for Pipelined Arithmetic Unit (파이프라인 구조 연산회로를 위한 AMBA AXI Slave 설계)

  • Choi, Byeong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.712-713
    • /
    • 2011
  • In this paper, the AMBA AXI slave unit that can verify the pipelined arithmetic unit is proposed and the 2-stage 16-bit pipelined multiplier is introduced as design example. The proposed AXI slave unit consists of input buffer block memory, control registers, pipelined arithmetic unit, control unit, output buffer block memory, and AXI slave interface unit. The main operational procedures are divided into the following steps, such as burst-mode input data loading for the input buffer memory, programming of control registers, arithmetic operations for block data in the input buffer memory, and burst-mode output data unloading from output buffer memory to host processor. Because the proposed AXI slave unit is general structure, it can be efficiently applicable to AMBA AXI and AHB slave unit with pipelined arithmetic unit.

  • PDF

A Study on the Understanding in Results of Arithmetic Operation (연산 결과의 의미 이해에 관한 연구)

  • Roh, EunHwan;Kang, JeongGi;Jeong, SangTae
    • East Asian mathematical journal
    • /
    • v.31 no.2
    • /
    • pp.211-244
    • /
    • 2015
  • The arithmetic operation have double-sided character. One is calculation as a process, the other is understanding in results as an outcome of the operation. We harbored suspicion on students' misunderstanding in an outcome of the operation, because the curriculum has focused on the calculation, as a process of arithmetic operation. This study starts with the presentation of this problem, we tried to find the recognition ability and character in the arithmetic operation. We researched the recognition ability for 7th grade 27 students who have enough experience in arithmetic operation when studying in elementary school. And we had an interview with 3students individually, that has an error in understanding in results of arithmetic operation but has no error in calculation. We focused on 3students' detailed appearance of the ability to understand in results of arithmetic operation and analysed the changing appearance after recommending unit record using operation expression. As a result, we could find the abily to underatanding in results of arithmetic operation and applicability to recommend unit record using operation expression. Through these results, we suggested educational implications in understanding in results of arithmetic operation.

The Hardware Design of CABAC for High Performance H.264 Encoder (고성능 H.264 인코더를 위한 CABAC 하드웨어 설계)

  • Myoung, Je-Jin;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.771-777
    • /
    • 2012
  • This paper proposes a binary arithmetic encoder of CABAC using a Common Operation Unit including the three modes. The binary arithmetic encoder performing arithmetic encoding and renormalizer can be simply implemented into a hardware architecture since the COU is used regardless of the modes. The proposed binary arithmetic encoder of CABAC includes Context RAM, Context Updater, Common Operation Unit and Bit-Gen. The architecture consists of 4-stage pipeline operating one symbol for each clock cycle. The area of proposed binary arithmetic encoder of CABAC is reduced up to 47%, the performance of proposed binary arithmetic encoder of CABAC is 19% higher than the previous architecture.

A design of transcendental function arithmetic unit for lighting operation of mobile 3D graphic processor (모바일 3차원 그래픽 프로세서의 조명처리 연산을 위한 초월함수 연산기 구현)

  • Lee, Sang-Hun;Lee, Chan-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.715-718
    • /
    • 2005
  • Mobile devices is getting to include more functions according to the demand of digital convergence. Applications based on 3D graphic calculation such as 3D games and navigation are one of the functions. 3D graphic calculation requires heavy calculation. Therefore, we need dedicated 3D graphic hardware unit with high performance. 3D graphic calculation needs a lot of complicated floating-point arithmetic operation. However, most of current mobile 3D graphics processors do not have efficient architecture for mobile devices because they are based on those for conventional computer systems. In this paper, we propose arithmetic units for special functions of lighting operation of 3D graphics. Transcendental arithmetic units are designed using approximation of logarithm function. Special function units for lighting operation such as reciprocal, square root, reciprocal of square root, and power can be obtained. The proposed arithmetic unit has lower error rate and smaller silicon area than conventional arithmetic architecture.

  • PDF

Comparison of Estimation Method of Pollutant Unit Loads from Bridge Area (교량지역의 다양한 비점오염물질 원단위 산정방법 비교)

  • Kim, Taewon;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.597-604
    • /
    • 2011
  • This research analyzed the runoff patterns and estimated unit loads of selected pollutatnts using monitored data conducted for three years in a bridge area. Three estimating methods; the arithmetic average method, the regression method and the rainfall class method were used to estimate the unit load. Results of three estimating methods were compared with the unit pollutant loads from landuses in Korea and the unit pollutant loads from urban watersheds in Milwaukee, USA. Unit load using the arithmetic mean method were found to be overestimated. In terms of TSS, unit loads of two estimate were half lower than that of USA. Estimated TN and TP unit loads of three estimate were lower than that of Ministry of Environment in Korea.

A design of Floating Point Arithmetic Unit for Geometry Operation of Mobile 3D Graphic Processor (모바일 3D 그래픽 프로세서의 지오메트리 연산을 위한 부동 소수점 연산기 구현)

  • Lee, Jee-Myong;Lee, Chan-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.711-714
    • /
    • 2005
  • We propose floating point arithmetic units for geometry operation of mobile 3D graphic processor. The proposed arithmetic units conform to the single precision format of IEEE standard 754-1985 that is a standard of floating point arithmetic. The rounding algorithm applies the nearest toward zero form. The proposed adder/subtraction unit and multiplier have one clock cycle latency, and the inversion unit has three clock cycle latency. We estimate the required numbers of arithmetic operation for Viewing transformation. The first stage of geometry operation is composed with translation, rotation and scaling operation. The translation operation requires three addition and the rotation operation needs three addition and six multiplication. The scaling operation requires three multiplication. The viewing transformation is performed in 15 clock cycles. If the adder and the multiplier have their own in/out ports, the viewing transformation can be done in 9 clock cycles. The error margin of proposed arithmetic units is smaller than $10^{-5}$ that is the request in the OpenGL standard. The proposed arithmetic units carry out operations in 100MHz clock frequency.

  • PDF

Hardware Design of High Performance Arithmetic Unit with Processing of Complex Data for Multimedia Processor (복소수 데이터 처리가 가능한 멀티미디어 프로세서용 고성능 연산회로의 하드웨어 설계)

  • Choi, Byeong-yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.123-130
    • /
    • 2016
  • In this paper, a high-performance arithmetic unit which can efficiently accelerate a number of algorithms for multimedia application was designed. The 3-stage pipelined arithmetic unit can execute 38 operations for complex and fixed-point data by using efficient configuration for four 16-bit by 16-bit multipliers, new sign extension method for carry-save data, and correction constant scheme to eliminate sign-extension in compression operation of multiple partial multiplication results. The arithmetic unit has about 300-MHz operating frequency and about 37,000 gates on 45nm CMOS technology and its estimated performance is 300 MCOPS(Million Complex Operations Per Second). Because the arithmetic unit has high processing rate and supports a number of operations dedicated to various applications, it can be efficiently applicable to multimedia processors.