• Title/Summary/Keyword: area specific resistance

Search Result 216, Processing Time 0.025 seconds

Study on Ohmic Resistance of Polymer Electrolyte Fuel Cells Using Current Interruption Method (전류차단법을 이용한 고분자전해질 연료전지의 오믹 저항 연구)

  • Ji, Sanghoon;Hwang, Yong-Sheen;Lee, Yoon Ho;Park, Taehyun;Paek, Jun Yeol;Chang, Ikwhang;Cha, Suk Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • The current interruption method is considered to be an efficient way of measuring the resistance of a fuel cell. In this study, the ohmic area specific resistances (ASRs) of polymer electrolyte fuel cells with different types of bipolar plates were evaluated using the current interruption method. The ohmic ASRs of both a fuel cell with graphite bipolar plates and a fuel cell with graphite foil-based assembled bipolar plates decreased as the current density increased. On the other hand, with increasing cell temperature, the ohmic ASRs of a fuel cell with graphite bipolar plates were decreased by a reduction in the proton transport resistance through the membrane, and the ohmic ASRs of a fuel cell with graphite foil-based assembled bipolar plates were increased by the differences in thermal expansion between different components of the bipolar plates.

Change of Pulmonary Artery Hemodynamics and Pulmonary Vascular Resistance in Experimental Pulmonary Embolism (실험적 급성 폐색전증에서 폐동맥혈역학 및 폐혈관저항의 변화)

  • Chung, Hee-Soon;Lee, Jae-Ho;Kim, Cheol-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.6
    • /
    • pp.913-922
    • /
    • 1995
  • Background: When we define the pressure of pulmonary vasculature in which a recruitment of blood flow occurs as $P_I$ and the proportion of change in pulmonary artery to that in cardiac output as IR and then we compare PI and IR with pulmonary vascular resistance, we would find some problems in pulmonary vascular resistance. In other words, it is the theory that, IR should be increased mainly in pulmonary embolism in which decreases the cross sectional area of pulmonary vasculature. But there are many contradictory reports resulted from various researches and the fact is known widely that any difference exists between PVR and PI, IR. For this reason, the purpose of this study is to observe how PI and IR change at the time of the outbreak and during treatment of the pulmonary embolism, and to find out the meaning of these new indicators and the difference from the pulmonary vascular resistance used generally when we subdivide the pulmonary vascular resistance into PI and IR. Method: After making AV fistula in experimental dog, we controlled cardiac output at the intervals of 15 minute in case of three kinds(all AV fistula are obstructed, only one of fistula is open and all of fistula is open), and after evoking massive pulmonary embolism with radioactive autologous blood clots, we measured the mean pulmonary artery pressure, and calculated PI and IR. We observed the pattern of change in PI and IR, without giving the control group any specific treatment and with injecting intravenously rtPA in the Group 1 and Group 2 at the dose of 1mg per kg, for 15 minutes fot the former and 3 hours for the latter. Result: 1) Pulmonary vascular resistance showed a change similar to that of pulmonary artery pressure and in all three group, PVR increased significantly, but group 1 and group 2 showed tendency that PVR keeps on decreasing after treatment, and the rate of decrease in group 1 is more rapid than group 2 significantly. 2) Both intersection(PI) and degree(IR) are proved statistically significant, in view of the straight line relationship between cardiac output and pulmonary artery pressure, calculated by minimal regression method. 3) PI changed similarly to pulmonary vascular resistance, while in the IR which is theoretically more similar to PVR, there was no significant difference or change after rtPA infusion. Conclusion: In the pulmonary embolism, Both change in IR which means real resistance of pulmonary vasculature and PI which was developed due to secondary vasoconstriction by pulmonary embolism are reflected same time.

  • PDF

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.

Case Studies on the Field Application of Miniature CPT's in South Korea (소형콘관입시험(Miniature CPT)의 국내현장적용 사례분석)

  • Yoon, Sung-Soo;Hwang, Dae-Jin;Kim, Jun-Ou;Ji, Wan-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.269-281
    • /
    • 2010
  • The cone penetration test(CPT) has been increasingly used for in situ site characterization. However, the use of CPT is often limited due to specific site conditions depending on the cone size, geometry, and capacity of the CPT system used. In South Korea, it has generally been considered that the CPT could be satisfactorily performed only in soft soils. Louisiana State University/ Louisiana Transportation Research Center has implemented a field-rugged continuous intrusion miniature cone penetration test (CIMCPT) system since the 1990s. The miniature cone penetrometer of the CIMCPT system has a cross-sectional cone area of $2cm^2$ allowing finer soil profiles compared to the standard $10cm^2$. The reduced cross-sectional area also enables a system capacity reduction leading to cost saving and ease in maintenance. In addition, the continuous intrusion mechanism allows fast and economic site investigations. Samsung C&T Corporation has recently implemented a similar CIMCPT system. In this study, case studies on the field application of Samsung CIMCPT system for the last 2 years are presented to illustrate its performance investigation and its usefulness and limitation. Results of the case studies show that the CIMCPT system can be applied to soils with cone tip resistance($q_c$) values up to about 30MPa and allows a reliable and useful way to characterize soft soils. The results also show that the rod buckling limits the investigation depth by the system and the large contact pressure of the CIMCPT truck prevents the use of the system at sites with soft surface soils. According to the results of the case studies, the Samsung CIMCPT system has been being upgraded with a miniature cone with a longer rod, a crawler-type transportation system, a pre-boring system, and so on.

  • PDF

A Study on the Impact-Induced Damage in CFRP Angle-ply Laminates (CFRP 사교적층판의 충격손상에 관한 연구)

  • 배태성;입야영;양동률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Carbon fiber reinforced plastics(CFRP) have gained increased application in aerospace structures because of their specific strength and stiffness, but are sensitive to impact-induced damage. An experimental investigation was carried out to evaluate the impact resistance of CFRP according to the ply angle. The specimens of angle ply laminate composites were employed with [0.deg. $_{6}$/ .deg.$_{10}$/0.deg.$_{6}$], in which 6 kinds of ply angle such as .deg.=15.deg., 30.deg., 45.deg., 60.deg., 75.deg. and 90.deg. were selected. The impact tests were conducted using the air gun type impact testing machine by steel balls of diameter of 5 mm and 10 mm, and impact-induced damages were evaluated under same impact speed of V=60m/s. The impact damaged zones were observed through a scanning acoustic microscope (SAM). The obtained results were summarized as follows: (1) Delaminations on the interfacial boundaries showed th directional characteristics to the fiber directions. The delamination area on the impact side (interface A) was considerably smaller compared to that of the opposite side (interface B). (2) Cracks corresponding to other delaminations than those mentioned in SAM photographs were also seen on the impact damaged zone. (3) The delamination patterns were affected by the ply-angle, the dimensions of the specimen, and the boundary conditions. (4) The impact damaged zone showed zone showed the delamination on the interfacial boundaries, transverse shear cracks of the surface layer, and bending cracks of the bottom layer.r.r.r.

Synthesisand Electrochemical Behaviors of Hybrid Carbon (ACF/Graphene) as Supports by Microwaves-irradiation Method for Polymer Exchange Membrane Fuel Cells (PEMFC) (마이크로웨이브를 이용한 고분자 전해질 연료전지용 복합 탄소 촉매 지지체 (ACF/Graphene)의 합성과 전기화학적 거동)

  • Cho, Yongil;Jeon, Yukwon;Park, Dae-Hwan;Juon, So-Me;Kim, Tae-Eon;Oh, Kyeongseok;Shul, Yong-Gun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.142-149
    • /
    • 2013
  • Carbon materials are mainly used as catalyst supports for polymer exchange membrane fuel cell (PEMFC). Catalyst supports are required specific characteristics of the carbon materials, such as large surface area and high electrical conductivity. Attempted were to improve electrical conductivity and to maintain high surface area of carbon materials using a microwave treatment. Microwave treatment, as a relatively new technique, takes short reaction time and reduce the consumption of the gases used for carbon treatment compared to a traditional heat treatment. Hybrid carbon (ACF/Graphene) as catalyst supports by microwave-irradiation method for PEMFC increase the cell performance because of increased electrical conductivity resulting in triple-phase contact and reduced the interfacial resistance. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray Diffraction (XRD) were employed to analyze carbon materials. The performance of microwave-treated carbon materials was evaluated by measuring current-voltage (I-V) characteristics and electrode impedance.

Fabrication of $SnO_2$ Gas Sensor added by Metal Oxide for DMMP (DMMP 검출용 금속산화물을 첨가한 $SnO_2$ 가스센서 제조)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.54-61
    • /
    • 2003
  • $SnO_2$ gas sensor for the detection DMMP, simulant of nerve gas was fabricated and its characteristics were examined. Sensing materials were $SnO_2$ added by TEX>$\alpha$-$Al_{2}O_{3}$ with 0∼20wt.% and $In_{2}O_{3}$ with 0∼3wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Its dimension was 7$\times$10$\times$0.6$\textrm{mm}^2$. Crystallite size 8t phase identification, specific surface area and morphology of fabricated $SnO_2$ powders were analyzed by X-ray diffraction(XRD), surface area analyzer(BET) and by a scanning electron microscope(SEM), respectively. Sensor was measured as flow type and sensor resistance change was monitored as real time using LabVIEW program. The best sensitivities were 75% at adding 4wt.% TEX>$\alpha$-$Al_{2}O_{3}$, operating temperature $300^{\circ}C$ and 87% at adding 2wt.% $In_{2}O_{3}$, operating temperature $350^{\circ}C$ to DMMP 0.5ppm. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with $\pm$3% in full scale. As a result, operating temperature was lower TEX>$\alpha$-$Al_{2}O_{3}$ than $In_{2}O_{3}$, but sensitivity was higher $In_{2}O_{3}$ than $\alpha$-$Al_{2}O_{3}$.

Electrochemical performance of double perovskite structured cathodes for intermediate temperature SOFCs

  • Jo, Seung-Hwan;Muralidharan, P.;Kim, Do-Kyung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.56.1-56.1
    • /
    • 2009
  • The intermediate operating temperature of solid oxide fuel cells (IT-SOFCs) have achieved considerable importance in the area of power fabrication. This is because to improve materials compatibility, their long-term stability and cost saving potential. However, to conserve rational cell performance at reduced-temperature regime, cathode performance should be obtained without negotiating the internal resistance and the electrode kinetics of the cell. Recently, double perovskite structure cathodes have been studied with great attention as a potential material for IT-SOFCs. In this study, double-perovskite structured cathodes of $GdBaCoCuO_{5+\delta}$, $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ compositions and $(1-x)GdBaCo_2O_{5+\delta}+xCe_{0.9}Gd_{0.1}O_{1.95}$ (x = 10, 20, 30 and 40 wt.%) composites were evaluated as the cathode for intermediate temperature solid oxide fuel cells(IT-SOFCs). Electrical conductivity of the cathodes were measured by DC 4-probe method, and the thermal expansion coefficient of each sample was measured up to $900^{\circ}C$ by a dilatometer study. Area specific resistances(ASR) of the $GdBaCo_{2/3}Cu_{2/3}Fe_{2/3}O_{5+\delta}$ cathode and 70 wt.% $GdBaCo_2O5+\delta$ + 30wt.% Ce0.9Gd0.1O1.95 composite cathode on CGO electrolyte substrate were analyzed using AC 3-probe impedance study. The obtained results demonstrate that double perovskite-based compositions are promising cathode materials for IT-SOFCs.

  • PDF

A Study on the Polarization Potential Distrbution of a Steel Disc in the Water by Specific Resistance of Corrosion Circumstances (환경의 비저항을 고려한 수중 원강판의 분극전위분포에 관한 연구)

  • 김귀식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.105-108
    • /
    • 1981
  • The oceanic effect on the climate of the southern coast of Korea was analysed based on the sea surface temperature and in order to study relationships between the fluctuation of the sea surface temperature and that of climatic elements. Meteolorogical data from 1960 to 1979 were used. In the year when difference between the air and water temperature was maximum, the air temperature in southern coast was higher than normal year. A fluctuation of the sea surface temperature plays an important influence to determine the variation of the air temperature in the coastal area. Humidity of the coastal climate depends upon the oceanic effect in summer, but not in winter. This results may be due to prevailing wind effect. The oceanic effect on the precipitation in the coastal area is not found.

  • PDF

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.