• Title/Summary/Keyword: area axioms

Search Result 4, Processing Time 0.022 seconds

Axioms underlying area of triangle and volume of triangular pyramid and Hilbert't third problem (삼각형의 넓이와 삼각뿔의 부피에 내재된 공리와 힐베르트의 세 번째 문제)

  • Do, Jonghoon
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.4
    • /
    • pp.371-385
    • /
    • 2015
  • In this paper we investigate the axioms defining area and volume so that revisit area formula for triangle, volume formula for triangular pyramid, and related contents in school mathematics from the view point of axiomatic method and Hilbert's third problem.

An axiomatic analysis on contents about the area of plane figures in the elementary school mathematics (초등학교 수학에서의 넓이 지도 내용에 대한 공리적 해석)

  • Do, Jong Hoon;Park, Yun Beom
    • Education of Primary School Mathematics
    • /
    • v.17 no.3
    • /
    • pp.253-263
    • /
    • 2014
  • In this paper we review an axiomatic definition of the area of plane figures with area axioms, discuss what the area axioms mean, and analyze the contents about the area of plane figures in elementary school mathematics from the view point of area axioms. So we evaluate which aspects of the concept of area are emphasized or deemphasized in the current elementary school mathematics textbook.

Pythagorean Theorem I: In non-Hilbert Geometry (피타고라스의 정리 I: 비-힐베르트 기하에서)

  • Jo, Kyeonghee;Yang, Seong-Deog
    • Journal for History of Mathematics
    • /
    • v.31 no.6
    • /
    • pp.315-337
    • /
    • 2018
  • Pythagorean thoerem exists in several equivalent forms in the Euclidean plane, that is, the Hilbert plane which in addition satisfies the parallel axiom. In this article, we investigate the truthness and mutual relationships of those propositions in various non-Hilbert planes which satisfy the parallel axiom and all the Hilbert axioms except the SAS axiom.

Misunderstandings and Logical Problems Related to the Centroid of a Polygon (도형의 무게중심과 관련된 오개념 및 논리적 문제)

  • Hong, Gap-Ju
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.391-402
    • /
    • 2005
  • The purpose of this study is to resolve misunderstanding for centroid of a triangle and to clarify several logical problems in finding the centroid of a Polygon. The conclusions are the followings. For a triangle, the misunderstanding that the centroid of a figure is the intersection of two lines that divide the area of the figure into two equal part is more easily accepted caused by the misinterpretation of a median. Concerning the equilibrium of a triangle, the median of it has the meaning that it makes the torques of both regions it divides to be equal, not the areas. The errors in students' strategies aiming for finding the centroid of a polygon fundamentally lie in the lack of their understanding of the mathematical investigation of physical phenomena. To investigate physical phenomena mathematically, we should abstract some mathematical principals from the phenomena which can provide the appropriate explanations for then. This abstraction is crucial because the development of mathematical theories for physical phenomena begins with those principals. However, the students weren't conscious of this process. Generally, we use the law of lever, the reciprocal proportionality of mass and distance, to explain the equilibrium of an object. But some self-evident principles in symmetry may also be logically sufficient to fix the centroid of a polygon. One of the studies by Archimedes, the famous ancient Greek mathematician, gives a solution to this rather awkward situation. He had developed the general theory of a centroid from a few axioms which concerns symmetry. But it should be noticed that these axioms are achieved from the abstraction of physical phenomena as well.

  • PDF