• Title/Summary/Keyword: arc fault

Search Result 229, Processing Time 0.037 seconds

Detection of High Impedance Fault Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로 퍼지 추론 시스템을 이용한 고임피던스 고장검출)

  • 유창완
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.426-435
    • /
    • 1999
  • A high impedance fault(HIF) is one of the serious problems facing the electric utility industry today. Because of the high impedance of a downed conductor under some conditions these faults are not easily detected by over-current based protection devices and can cause fires and personal hazard. In this paper a new method for detection of HIF which uses adaptive neuro-fuzzy inference system (ANFIS) is proposed. Since arcing fault current shows different changes during high and low voltage portion of conductor voltage waveform we firstly divided one cycle of fault current into equal spanned four data windows according to the mangnitude of conductor voltage. Fast fourier transform(FFT) is applied to each data window and the frequency spectrum of current waveform are chosen asinputs of ANFIS after input selection method is preprocessed. Using staged fault and normal data ANFIS is trained to discriminate between normal and HIF status by hybrid learning algorithm. This algorithm adapted gradient descent and least square method and shows rapid convergence speed and improved convergence error. The proposed method represent good performance when applied to staged fault data and HIFLL(high impedance like load)such as arc-welder.

  • PDF

Malfunction Detection of High Voltage Equipment Using Microphone Array and Infrared Thermal Imaging Camera (Microphone Array와 열화상 카메라를 이용한 고압설비 고장검출)

  • Han, Sun-Sin;Choi, Jae-Young;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • The paper proposes a hierarchical fault detection method for the high voltage equipment using a microphone array which detects the location of fault and the thermal imaging and CCD cameras which verifies the fault and stores the image, respectively. There are partial arc discharges on the faulty insulators, which generates a specific pattern of sound. Detecting the signal using the microphone array, the location of the faulty insulator can be estimated. The 6th band-pass filter was applied to remove noise signal from wind or external influence. When the mobile robot carries the thermal and CCD cameras to the possible place of the fault insulator, the fault insulators or power transmission wires can be detected by the thermal images, which are caused by the aging or natural erosion. Finally, the CCD camera captures the image of the fault insulator for the record. The detection scheme of fault location using the microphone array and the thermal images have been proved to be effective through the real experiments. As a result of this research, it becomes possible to use a mobile robot with the integrated sensors to detect the fault insulators instead of a human being.

Performance Evaluation of the Harmonic Parameters for High Impedance Fault Detection in Distribution System (배전계통의 고 임피던스 고장 검출 고조파 변수 성능 평가)

  • Oh, Yong-Taek;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.883-885
    • /
    • 1997
  • High impedance fault(HIF) is random in its behavior even in a similar environment. The detection of Ire HIF has focused on the development of algorithms based on harmonic, parameters of the arc currents. However, a fact that proper selection of the harmonic parameters, rather than algorithm selection, is more important is shown in this paper by applying three different performance evaluation methods on two HIF detection algorithms using eight harmonic parameters.

  • PDF

A Novel Algorithm for Fault Type Fast Diagnosis in Overhead Transmission Lines Using Hidden Markov Models

  • Jannati, M.;Jazebi, S.;Vahidi, B.;Hosseinian, S.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.742-749
    • /
    • 2011
  • Power transmission lines are one of the most important components of electric power system. Failures in the operation of power transmission lines can result in serious power system problems. Hence, fault diagnosis (transient or permanent) in power transmission lines is very important to ensure the reliable operation of the power system. A hidden Markov model (HMM), a powerful pattern recognizer, classifies events in a probabilistic manner based on fault signal waveform and characteristics. This paper presents application of HMM to classify faults in overhead power transmission lines. The algorithm uses voltage samples of one-fourth cycle from the inception of the fault. The simulation performed in EMTPWorks and MATLAB environments validates the fast response of the classifier, which provides fast and accurate protection scheme for power transmission lines.

A Study on High Impedance Fault Detection using Lifting Scheme (Lifting을 이용한 고저항고장 검출에 관한 연구)

  • Hong, D.S.;Yim, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2228-2230
    • /
    • 2002
  • The research presented in this paper focuses on a method for the detection of High Impedance Fault(HIF). The method will use the Lifting and neural network system. HIF on the multi-grounded three-phase four-wires primary distribution power system cannot be detected effectively by existing over current sensing devices. These paper describes the application of lifting scheme to the various HIF data. These data were measured in actual 22.9kV distribution system. Wavelet transform analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate HIF from the normal status by a gradient descent method. The proposed method performed very well by proving the right state when it was applied staged fault data and normal load mimics HIF, such as arc-welder.

  • PDF

Development of electric safety control system for incapable operation of ELB and MCB using the low voltage distribution line (저압 배전선로의 누전 및 배선용 차단기의 오동작 방지를 위한 전기안전 제어장치 개발)

  • Kwak, Dong-Kurl;Shin, Mi-Young;Jung, Do-Young;Kim, Hyo-Jin;Baek, Seong-Hyun;Choi, Byung-Seub
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.371-372
    • /
    • 2007
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The occurrence factor of the fire is electric arc or spark accompanied with electrical faults. Residual Current Protective Device (RCD), that is Earth Leakage Circuit Breaker(ELB) and Molded_case Circuit Breaker (MCB), of high sensitivity type used at low voltage wiring cuts off earth leakage and overload, but the RCD can't cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied low voltage distribution panel are prescribed to rated breaking time about 30[ms] (KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To be improved on such problem, this research development is proposed to a auxiliary control apparatus for RCD trip on electric arc or spark due to electrical fire. Some experimental results of the proposed apparatus is confirmed to the validity of the analytical results.

  • PDF

Study on Measurement Method of Dielectric Recovery Voltage to analysis Dielectric Recovery Characteristic of Molded Case Circuit Breaker (저압 배선용차단기 절연회복특성 파악을 위한 절연회복전압 측정기법 연구)

  • Song, Tae-Hun;Cho, Young-Maan;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.49-54
    • /
    • 2015
  • Molded Circucit Breaker(MCCB) is a most widely used device to protect loads from the over-current in low power level distribution system. When the MCCB interrupts the over-current, the arc discharge occurred between fixed contact and moving contact to create hot gas. By the Lorentz force due to arc current, the occurred arc is bent to the grids. The grids extend and cool and divide it for arc extinguish. In the majority cases, the MCCB protects loads by interrupting the over-current successfully but in some cases the re-ignition is occurred by hot-gas created during process of interruption. The re-ignition arises when the recovery voltage(RV) is more higher than the recovery strength between contacts and it leads to interruption fault. Therefore to find out the dielectric recovery characteristics of protecting device has a great importance for preventing interruption fault. In this paper, we studies measurement method of the dielectric recovery characteristics considering inherent attribute of the MCCB. To measure the dielectric recovery characteristic of MCCB, we makes an experiment circuit for applying the over-current and the randomly recovery voltage. The measurement methode to find out the dielectric recovery voltage of the MCCB was established and the result was based on experiment results.

A Study on the Developing Method of HIF Monitoring Data using Wavelet Coefficient (웨이브렛 계수를 이용한 고저항 지락고장 감시데이터 산출방법 연구)

  • Jung, Young-Beom;Jung, Yeon-Ha;Kim, Kil-Sin;Lee, Byung-Sung;Bae, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • As the increasing HIF(High Impedance Fault) with the arc cannot be easily detected for the low fault current magnitude compared to actual load in distribution line. However, the arcing current shows that the magnitude varies with time and the signal is asymmetric. In addition, discontinuous changes occur at starting point of arc. Considering these characteristics, wavelet transformation of actual current data shows difference between before and after the fault. Althogh raw data(detail coefficient) of wavelet transform may not be directly applied to HIF detection logic in a device, there are several developing methods of HIF monitoring data using the original wavelet coefficients. In this paper, a simple and effective developing methods of HIF monitoring data were analized by using the signal data through an actual HIF experiment to apply them to economic devices. The methods using the sumation of the wavelet coefficient squares in one cycle of the fundamental frequency as the energies of the wavelet coefficeits and the sumation of the absolute values were compared. Besides, the improved method which less occupies H/W resouces and can be applied to field detection devices was proposed. and also Verification of this HIF detection method through field test on distribution system in KEPCO power testing center was performed.

A Plan for Construction of the National Electrical Safety Grid to Prevent the Fires Caused by Electrical Faults (전기화재 예방을 위한 국가전기안전망 구축 방안)

  • Bae, Seok-Myeong;Jeon, Jeong-Chay;Park, Chan-Eom;Bae, Seok-Myeong;Ko, Won-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2267-2273
    • /
    • 2009
  • In this paper, in order to monitor and manage an electrical risk factor like as leakage current, load current, and arc-fault, a real time monitoring and management system being operated in the ubiquitous environment was developed, and a plan of construction of an electrical safety grid using the system was proposed. For confirmation of usefulness and reliability of the proposed safety system and grid, the developed intelligent panels were applied to 28 Korean traditional houses in Jeonjoo city, and the grid including the panels was operated. If the proposed National Electrical Safety Grid is completely constructed in the houses of general electrical users, the Grid will have an effect on that a main manager on electrical safety transfers from management system by general people to real-time management system by expert. As a result, the electrical fires caused by an over-load, an arc-fault, and an earth-fault will be prevented.

Development of Hybrid Extinction $SF_6$ Interrupter using Analytical and Experimental Method ($SF_6$ 자력팽창 소호부 개발에 관한 실험 및 해석적 고찰)

  • Sohn, J.M.;Kang, J.S.;Lee, B.W.;Kim, Y.K.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.696-698
    • /
    • 2001
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. To develope this type of interrupter, we introduced analytical analysis including electromagnetic and arc fluid simulation and experimental analysis including construction of current source generation facility and arc behavior measurements. In this research, the principle of the interrupting techniques are given and analytical and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF