• Title/Summary/Keyword: arbitrary configuration

Search Result 62, Processing Time 0.026 seconds

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.

Reconfigurable FIR Filter Design Using Partial Reconfiguration (부분 재구성 방법을 이용한 재구성형 FIR 필터 설계)

  • Choi, Chang-Seok;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.97-102
    • /
    • 2007
  • This paper presents our implemented, synthesized and tested on demand and partial reconfiguration approaches for FIR filters using Xilinx Virtex FPGAs. Our scope is implementation of a low-power, area-efficient autonomously reconfigurable digital signal processing architecture that is tailored for the realization of arbitrary response FIR filters on Xilinx Virtex4 FPGAs. The implementation of design addresses area efficiency and flexibility allowing dynamically inserting and/or removing the partial modules to implement the partial reconfigurable FIR filters with various taps. This partial reconfigurable FIR filter design shows the configuration time improvement, good area efficiency and flexibility by using the dynamic partial reconfiguration method.

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari;Kim, Eun-Geun;Kim, Junhoi;Choi, Sung-Eun;Park, Wook;Kwon, Sunghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3735-3739
    • /
    • 2012
  • We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.

Empirical Analysis Research on Waterdrop's Deformation by Shock Wave (충격파에 의한 물방울의 변형에 관한 경험적 해석 연구)

  • Hong, Yun Ky;Yeom, Geum Su;Moon, Kwan Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.638-644
    • /
    • 2016
  • In this research, theoretical study on empirical analysis method to estimate waterdrop's deformation by shock wave is presented. Flow field is calculated using theoretical and empirical relations. Waterdrop's deformation including movement, size, mass, and orientation is modeled using empirical relations derived from existing experimental data. Developed method is applied to specific flight examples with arbitrary flight speed and vehicle's configuration. The flight speed is assumed to Mach number of 2 and 4. The diameter of waterdrop is varied from 1 to 5 mm. Waterdrops along the stagnation line in front of hemispherical nose with the radius of 50 mm and around a cone-shaped side wall with the half angle of 20 degree are considered. It is found that the maximum diameter of the waterdrop is increased up to 2.77 times the initial diameter. The mass is conserved more than 66.7 %. In the case of a cone-shaped side wall, waterdrop's orientation angles defined from the flight direction when the Mach number is 2 and 4 are calculated as 33.0 and 25.6 degree, respectively.

Zigzag Gait Planning of n Quadruped Walking Robot Using Geometric Search Method (기하학적 탐색을 이용한 4각 보행로봇의 지그재그 걸음새 계획)

  • Park, Se-Hoon;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.142-150
    • /
    • 2002
  • This paper presents a systematic method of the zigzag gait planning for quadruped walking robots. When a robot walks with a zigzag gait, its body is allowed to move from side to side, while the body movement is restricted along a moving direction in conventional continuous gaits. The zigzag movement of the body is effective to improve the gait stability margin. To plan a zigzag gait in a systematic way, the relationship between the center of gravity(COG) and the stability margin is firstly investigated. Then, new geometrical method is introduced to plan a sequence of the body movement which guarantees a maximum stability margin as well as monotonicity along a moving direction. Finally, an optimal swing-leg sequence is chosen for a given arbitrary configuration of the robot. To verify the proposed method, computer simulations have been performed for both cases of a periodic gait and a non-periodic gait.

Applicability of the Krško nuclear power plant core Monte Carlo model for the determination of the neutron source term

  • Goricanec, Tanja;Stancar, Ziga;Kotnik, Domen;Snoj, Luka;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3528-3542
    • /
    • 2021
  • A detailed geometrical model of a Krško reactor core was developed using a Monte Carlo neutron transport code MCNP. The main goal of developing an MCNP core model is for it to be used in future research focused on ex-core calculations. A script called McCord was developed to generate MCNP input for an arbitrary fuel cycle configuration from the diffusion based core design package CORD-2, taking advantage of already available material and temperature data obtained in the nuclear core design process. The core model was used to calculate 3D power density profile inside the core. The applicability of the calculated power density distributions was tested by comparison to the CORD-2 calculations, which is regularly used for the nuclear core design calculation verification of the Krško core. For the hot zero power and hot full power states differences between MCNP and CORD-2 in the radial power density profile were <3%. When studying axial power density profiles the differences in axial offset were less than 2.3% for hot full power condition. To further confirm the applicability of the developed model, the measurements with in-core neutron detectors were compared to the calculations, where differences of 5% were observed.

Real-time Static Deflection Compensation of an LCD Glass-Handling Robot (LCD 글래스 핸들링 로봇의 실시간 정적 처짐 보상)

  • Cho Phil-Joo;Kim Dong-Il;Kim Hyo-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.741-749
    • /
    • 2006
  • For last couple of decades, uses of TFI-LCDs have been expanded to many FPD(Flat Panel Display) applications including mobile displays, desktop monitors and TVs. Furthermore, there has been growing demand for increasingly larger LCD TVs. In order to meet this demand as well as to improve productivity, LCD manufactures have continued to install larger-generation display fabrication facilities which are capable of producing more panels and larger displays per mother glass(substrate). As the size of mother glass becomes larger, a robot required to handle the glass becomes bigger accordingly, and its end effectors(arms) are extended to match the glass size. With this configuration, a considerable static deflection occurs at the end of the robot arms. In order to stack maximum number of mother glasses on a given footprint, the static deflection should be compensated. This paper presents a novel static deflection compensation algorithm. This algorithm requires neither measurement instrument nor additional vertical axis on the robot. It is realized by robot controller software. The forward and inverse kinematics considering compensation always guarantees a unique solution, so the proposed algorithm can be applied to an arbitrary robot position. The algorithm reduced static deflection by 40% in stationary robot state experiment. It also improved vertical path accuracy up to 60% when the arm was running at its maximum speed. This algorithm has been commercialized and successfully applied to a seventh-generation LCD glass-handling robot.

Energy-Aware Self-Stabilizing Distributed Clustering Protocol for Ad Hoc Networks: the case of WSNs

  • Ba, Mandicou;Flauzac, Olivier;Haggar, Bachar Salim;Makhloufi, Rafik;Nolot, Florent;Niang, Ibrahima
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2577-2596
    • /
    • 2013
  • In this paper, we present an Energy-Aware Self-Stabilizing Distributed Clustering protocol based on message-passing model for Ad Hoc networks. The latter does not require any initialization. Starting from an arbitrary configuration, the network converges to a stable state in a finite time. Our contribution is twofold. We firstly give the formal proof that the stabilization is reached after at most n+2 transitions and requires at most $n{\times}log(2n+{\kappa}+3)$ memory space, where n is the number of network nodes and ${\kappa}$ represents the maximum hops number in the clusters. Furthermore, using the OMNeT++ simulator, we perform an evaluation of our approach. Secondly, we propose an adaptation of our solution in the context of Wireless Sensor Networks (WSNs) with energy constraint. We notably show that our protocol can be easily used for constructing clusters according to multiple criteria in the election of cluster-heads, such as nodes' identity, residual energy or degree. We give a comparison under the different election metrics by evaluating their communication cost and energy consumption. Simulation results show that in terms of number of exchanged messages and energy consumption, it is better to use the Highest-ID metric for electing CHs.

System-Level Fault Diagnosis using Graph Partitioning (그래프 분할을 이용한 시스템 레벨 결함 진단 기법)

  • Jeon, Gwang-Il;Jo, Yu-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.12
    • /
    • pp.1447-1457
    • /
    • 1999
  • 본 논문에서는 일반적인 네트워크에서 적응력 있는(adaptive) 분산형 시스템 레벨 결함 진단을 위한 분할 기법을 제안한다. 적응력 있는 분산형 시스템 레벨 결함 진단 기법에서는 시스템의 형상이 변경될 때마다 시험 할당 알고리즘이 수행되므로 적응력 없는 결함 진단 기법에 비하여 결함 감지를 위한 시험의 갯수를 줄일 수 있다. 기존의 시험 할당 알고리즘들은 전체 시스템을 대상으로 하는 비분할(non-partitioning) 방식을 이용하였는데, 이 기법은 불필요한 과다한 메시지를 생성한다. 본 논문에서는 전체 시스템을 이중 연결 요소(biconnected component) 단위로 분할한 후, 시험 할당은 각 이중 연결 요소 내에서 수행한다. 이중 연결 요소의 관절점(articulation point)의 특성을 이용하여 각 시험 할당에 필요한 노드의 수를 줄임으로서, 비분할 기법들에 비해 초기 시험 할당에 필요한 메시지의 수를 감소시켰다. 또한 결함이 발생한 경우나 복구가 완료된 경우의 시험 재 할당은 직접 영향을 받는 이중 연결 요소내로 국지화(localize) 시켰다. 본 논문의 시스템 레벨 결함 진단 기법의 정확성을 증명하였으며, 기존 비분할 방식의 시스템 레벨 결함 진단 기법과의 성능 분석을 수행하였다.Abstract We propose an adaptive distributed system-level diagnosis using partitioning method in arbitrary network topologies. In an adaptive distributed system-level diagnosis, testing assignment algorithm is performed whenever the system configuration is changed to reduce the number of tests in the system. Existing testing assignment algorithms adopt a non-partitioning approach covering the whole system, so they incur unnecessary extra message traffic and time. In our method, the whole system is partitioned into biconnected components, and testing assignment is performed within each biconnected component. By exploiting the property of an articulation point of a biconnected component, initial testing assignment of our method performs better than non-partitioning approach by reducing the number of nodes involved in testing assignment. It also localizes the testing reassignment caused by system reconfiguration within the related biconnected components. We show that our system-level diagnosis method is correct and analyze the performance of our method compared with the previous non-partitioning ones.