• Title/Summary/Keyword: arbitrarily

Search Result 786, Processing Time 0.026 seconds

A Finite Element Analysis of Thixoforging Process by using Arbitrarily Shaped Dies (임의 형상의 다이를 이용한 반용융 단조 공정의 유한요소해석)

  • Kang, Chung-Gil;Kim, Nam-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.123-134
    • /
    • 1999
  • A new forming technology has been developed to fabricate near-net shape components by using aluminum alloys with globular microstructure. The estimations of filling characteristic in the forging simulation with arbitrarily shaped dies of SSM are calculated by finite element method with proposed algorithm. The proposed model and various boundary conditions for arbitrarily shaped die are investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation processes with arbitrarily shaped dies are performed on the isothermal conditions and axisymmetric problems. To analyze the forging process simulation with SSM, new stress-strain relationship for semi-solid behaviour is described, and forging the liquid flow. Furthermore, For the purpose of getting net shape of SSM, it is important to be obtain a solid fraction in forging process with arbitrarily shaped dies. To produce a automotive part which have good mechanical properties, the filling pattern in accordance with die velocity and solid fraction distribution has to be estimated for arbitrarily shaped die.

  • PDF

Computationally efficient wavelet transform for coding of arbitrarily-shaped image segments

  • 강의성;이재용;김종한;고성재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1715-1721
    • /
    • 1997
  • Wavelet transform is not applicable to arbitrarily-shaped region (or object) in images, due to the nature of its global decomposition. In this paper, the arbitrarily-shaped wavelet transform(ASWT) is proposed in order to solve this problem and its properties are investigated. Computation complexity of the ASWT is also examined and it is shown that the ASWT requires significantly fewer computations than conventional wavelet transform, since the ASWT processes only the object region in the original image. Experimental resutls show that any arbitrarily-shaped image segment can be decomposed using the ASWT and perfectly reconstructed using the inverse ASWT.

  • PDF

Vibration Analysis of Arbitrarily-Shaped Beams (임의 형태를 가진 보의 진동해석)

  • 민경원;강경수;홍성목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.175-180
    • /
    • 1993
  • A new method for the vibration analysis of arbitrarily-shaped beams is proposed on the assumption of imaginary seperation of the beams into prismatic beams and the remaining portions. The stiffness and mass of the beams are devided into two portions according to the seperation. Applying the mode shapes of prismatic beams and Lagrange's equations give new characteristics equation. This equation has a low dimension of matrix with the coupling terms showing the effect of remaining portions on the vibration of arbitrarily-shaped beams

  • PDF

Analysis of Arbitrarily-Shaped Microstrip Antenna in Multi-Layered (다층 유전체에서 임의의 형상을 갖는 마이크로스트립 안테나의 해석)

  • Kim, Sang-Jin;Kim, Young-Sik;Cheon, Chang-Yul
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1821-1823
    • /
    • 1998
  • In this paper, arbitrarily-shaped microstrip patch antenna in multi-layered is analyzed using spatial domain MoM. The triangular patch function is adopted here as the expansion function for planar arbitrarily-shaped microstrip. For example, an edge-fed rectangular patch antenna on a single-layered substrate is analyzed. The results show the agreement between the calculation and measurement.

  • PDF

A Variable Structure Point-to-Point Regulation Controller for Uncertain General Linear Systems (불확실 선형 시스템을 위한 적분 가변구조 지점에서 지점으로 레귤레이션 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.519-525
    • /
    • 2014
  • In this paper, an alternative variable structure controller is designed for the point-to-point regulation control of uncertain general linear plants so that the output of plants can be controlled from an arbitrarily given initial point to an arbitrarily given reference point in the state space. By using the error between the steady state value of the output and an arbitrarily given reference point and those integral, a transformed integral sliding surface is defined, in advance, as the surface from an initial state to an arbitrarily given reference point without the reaching phase problems. A corresponding control input is suggested to satisfy the existence condition of the sliding mode on the preselected transformed integral sliding surface against matched uncertainties and disturbances. Therefore, the output controlled by the proposed controller is completely robust and identical to that of the preselected transformed integral sliding surface. Through an example, the effectiveness of the suggested controller is verified.

Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys (알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석)

  • 강충길;임미동
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

Measurement of the position and pose of arbitrarily placed polyhedrons (임의로 놓여진 다면체의 위치와 자세측정에 관한 연구)

  • 이상용;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.613-617
    • /
    • 1990
  • This paper presents a method of calculating the position and orientation of a polyhedron arbitrarily placed in 3-D space using two cameras. We use key feature of the object and CAD data to solve the correspondence problem between two cameras' images.

  • PDF

Development of a Modified NDIF Method for Extracting Highly Accurate Eigenvalues of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 고정밀도 고유치 추출을 위한 개선된 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.742-747
    • /
    • 2012
  • A modified NDIF method using a sub-domain approach is introduced to extract highly accurate eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that it can be applicable for only convex cavities. It was revealed that the solution of the NDIF method is very inaccurate or is not suitable for concave cavities. To overcome the weak point, the paper proposes the sub-domain method of dividing a concave domain into several convex domains. Finally, the validity of the proposed method is verified in two case studies, which indicate that eigenvalues obtained by the proposed method are more accurate compared to the exact method, the NDIF method, or FEM(ANSYS).

Development of the NDIF Method Using a Sub-domain Approach for Extracting Highly Accurate Natural Frequencies of Arbitrarily Shaped Plates (임의 형상 평판의 고정밀도 고유진동수 추출을 위한 분할영역법 기반 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.830-836
    • /
    • 2012
  • The NDIF method based on a sub-domain technique is introduced to extract highly accurate natural frequencies of arbitrarily shaped plates with the simply-supported boundary condition. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped plates with various boundary conditions, has the feature that it yields highly accurate natural frequencies thanks to its effective theoretical formulation, compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that it can be applicable for only convex plates. It was revealed that the NDIF method offers very inaccurate natural frequencies or no solution for concave cavities. To overcome the weak point, the paper proposes the sub-domain method of dividing a concave plate into several convex domains. Finally, the validity of the proposed method is verified in various case studies, which indicate that natural frequencies obtained by the proposed method are very accurate compared to the exact method and FEM(ANSYS).

Development of an Effective Method for Extracting Eigenvalues of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 효율적인 고유치 해석 기법 개발)

  • Kang, S.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.124-129
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn't take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

  • PDF