• Title/Summary/Keyword: aramid fiber

Search Result 172, Processing Time 0.034 seconds

Improvement of Photo-stability for p-Aramid Fibers by SiO2/TiO2 Sol-Gel Method (SiO2/TiO2 sol-gel법을 이용한 p-아라미드 섬유의 내광성 증진)

  • Lee, Young-Il;Jung, Min-Hyuck;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • Aramid fibers are being used increasingly in a wide range of application due to low density, high specific strength, high modulus, and high thermal resistance. But owing to its special physical and chemical structures, it is sensitive to absorb the ultraviolet light which will degrade the fiber's useful mechanical properties and structure. In this paper, the sol-gel technique was used to improve the photo-stability of p-aramid fibers. $TiO_2$, modified $SiO_2$/$TiO_2$ sol were used as coating solutions. The influence of the such coatings on the photo-stability of p-aramid fiber was investigated by an accelerated photo-ageing method using xenon lamp. The photo-stability of p-aramid fiber showed obvious improvement after the modified silica binding coating. But the amorphous $TiO_2$ sol coatings showed a negative effect. After 144h light exposure, the modified silane binder-coated fibers showed less degradation in mechanical properties with the retained tensile strength greater than about 70% of the original value.

Improving the Photo-stability of p-aramid Fiber by TiO2 Nanosol (TiO2 sol-gel 합성에 의한 파라 아라미드 섬유의 내광성 증진 연구)

  • Park, Sung-Min;Kwon, Il-Jun;Sim, Ji-Hyun;Lee, Jae-Ho;Kim, Sam-Soo;Lee, Mun-Cheul;Choi, Jong-Seok
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.126-133
    • /
    • 2013
  • Although para-aramid fibers poss higher mechanical properties, they show very low resistance to sunlight exposure. This paper studied on the effect of nano-sol coated $TiO_2$ to improve the photo-stability of p-aramid fibers. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R ratio ($H_2O$/titanium iso-propoxide). All samples were characterized by XRD, TEM and UV-vis spectrometer. The mechanical properties of p-aramid fabrics by $TiO_2$ nano-sol coating before and after sunlight irradiation were measured with tensile tester. XRD pattern of titanium dioxide particles was observed by mixing phase together with rutile and anatase type. The results showed, after sunlight irradiation, the decreased mechanical properties of the fiber. Furthermore, the sunlight irradiation obviously deteriorated the surface and defected areas of the fiber severely by photo-induced chain scission and end group oxidation in air.

Research of the Composite Spun Yarn Manufacturing Process using Silicon Carbide and Para Aramid Fiber (SiC/p-Aramid 복합방적사 제조기술 연구)

  • Kim, Booksung;Ryu, Huijun
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.309-316
    • /
    • 2021
  • Due to the rigid nature of the silicon carbide fiber(SiC), fiber damage occurs from the friction during the carding process. This damage not only lowers the spun yarn yield, but also lowers the heat resistance of the spun yarn, so that ultra-high heat resistant yarn cannot be manufactured. Therefore, in the carding process where the most friction between fiber and machine(wire, etc.) occurs, some factors were modified and tested, and as a result of measuring the change in physical properties, fiber damage decreased due to the wire angle or wire density, resulting in improved yield. The test method used to measure the yield of SiC fiber was the carbonization method, and the content of SiC fibers was calculated using the remaining amount after carbonization. Carbonization test was performed at air condition, 700℃, and for 2 hours. Analysis by SEM-EDX showed that the carbide was consistent with the composition of the SiC fiber.

Experimental Study of Ductility and Strength Enhancement for RC Columns Retrofitted with Several Types of Aramid Reinforcements (아라미드계 섬유 보강을 통한 RC기둥의 연성과 강도 증진에 대한 실험 연구)

  • Lee, Gayoon;Lee, Dong-Young;Park, Minsoo;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.171-180
    • /
    • 2023
  • This study proposed a seismic reinforcement of RC columns with non-seismic details, a fiber reinforcement method of aramid sheets and MLCP (high elasticity aromatic polyester fiber material) with different characteristics, and 4 full-size column specimens and conducted experiments. The results show that a non-seismic specimen (RC-Orig) rapidly lost its load-bearing capacity after reaching the maximum load, and shear failure occurred. The RC column reinforced with three types of aramid did not show an apparent increase in strength compared to the unreinforced specimen but showed a ductile behavior supporting the load while receiving a lateral displacement at least 1.57 to 1.95 times higher than the unreinforced specimen. The fracture mode of the specimen, according to the application of lateral load, also changed from shear to ductile fracture through aramid-based reinforcement. In addition, when examining the energy dissipation ability of the reinforced specimens, a ductile behavior dissipating seismic energy performed 4 times greater and more stably than the existing specimens.

A Novel Manufacturing Method for Carbon Nanotube/Aramid Fiber Filled Hybrid Multi-component Composites

  • Song, Young-Seok;Oh, Hwa-Jin;Jeong, Tai-Kyeong T.;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • A novel manufacturing method for hybrid composites filled with carbon nanotubes (CNTs) and aramid fibers is proposed. To disperse the CNTs in the epoxy matrix with the presence of aramid fibers, CNT/polyethyleneoxide (PEO) composites are prepared and utilized because PEO is miscible in the epoxy resin. After thin films are made of the CNT/PEO composite and placed together with the aramid fibers, the epoxy resin is infused to them. The PEO is dissolved in the epoxy and then the CNTs are dispersed in the PEO/epoxy matrix between aramid fibers before the pre-heated matrix is cured. It is found that the PEO is completely miscible with the epoxy resin and CNTs are dispersed well in the space between the aramid fibers.

The Fatigue Behavior and Delamination Properties in Fiber Reinforced Aramid Laminates -Case (I) : AFRP/Al Laminates-

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.343-349
    • /
    • 2003
  • The fuselage-wing intersection suffers from the cyclic bending moment of variable amplitude. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in AFRP/Al laminate of fuselage-wing was investigated in this study. The cyclic bending moment fatigue test in AFRP/Al laminate was performed with five levels of bending moment. The shape and size of the delamination Lone formed along the fatigue crack between aluminum sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging behavior and the delamination zone were studied. As results, fiber failures were not observed in the delamination zone in this study, the fiber bridging modification factor increases and the fatigue crack growth rate decrease and the shape of delamination zone is semi-elliptic with the contour decreasing non-linearly toward the crack tip.