• Title/Summary/Keyword: aqueous ozone

Search Result 56, Processing Time 0.028 seconds

Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment - (전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 -)

  • Yang, Hae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.

Degradation of Humic Acid and Formation of Formaldehyde in PEROXONE Processes (PEROXONE(Ozone/Hydrogen Peroxide)공정에서의 부식산 분해 및 포름알데히드의 생성)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2001
  • This research was studied the action of the coupling ozone-hydrogen peroxide on aqueous humic acid. PEROXONE process is enhanced the generation of hydroxyl radicals which is effective for degradation of organic matters. Therefore the changes of $UV_{254}$ and TOC were investigated through the change of concentrations, injection time of $H_2O_2$, initial pH of aqueous humic acid and concentrations of radical savenger as $HCO_3{^-}$ in the PEROXONE processes. And the GC/ECD was used to detect the formaldehyde formed by ozonation of humic acid. From the experimental results, concentrations and injection time of $H_2O_2$ and initial pH in solution in the PEROXONE processes were very important for enhancing the efficiency of degradation in humic acid. The results indicated that removal efficiency of TOC was the highest when concentration of $H_2O_2$ was 5mg/L, injection time of $H_2O_2$ was 5 minutes and initial pH in solution was 10.5. And presence of alkalinity in solution was reduced the efficiency of treatment. The formaldehyde were formed less PEROXONE processes than only ozone. When initial pH in solution were changed from 3.5 to 10.5, the formaldehyde were formed highest concentration at pH 5.

  • PDF

Removal Properties of Methylene Blue in Catalytic Ozonation (촉매오존화에 의한 메틸렌 블루 제거특성)

  • Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.5-12
    • /
    • 2017
  • Effects of operating parameters such as activated carbon dose, gaseous $O_3$ concentration and pH on the properties of methylene blue(MB) degradation in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon catalyzed the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting MB degradation. Thus the increase of activated carbon dose enhanced the MB and TOC removal. The higher gaseous ozone concentration injected, the promoted MB and TOC removal obtained through the enhanced mass transfer. The MB removal was not significantly affected by the variation of aqueous pH. Catalytic ozonation can be considered as an efficient alternative in treating refractory pollutants in textile wastewater with faster and higher dye and TOC removal compared with ozonation and adsorption.

Reduction of Microflora in the Manufacture of Saengshik by Hygienic Processing

  • Bang, Woo-Seok;Eom, Young-Rhan;Oh, Deog-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • This study was conducted to determine the effect of hygienic processing (HP) on the reduction of microorganisms during manufacturing of saengshik with two vegetables (carrots and cabbage) and two grains (barely and glutinous rice) compared to general processing (GP). For GP, distilled water was used for washing raw materials and equipment. For HP, aqueous ozone (3 ppm) in combination with 1% citric acid and 70% alcohol were used for washing raw materials and the equipment, respectively. In carrots, after cutting, total aerobic bacteria (TAB), yeast and mold (YM) and coliforms were significantly increased to 5.19, 8.04 and 2.08 ($log_{10}$ CFU/g), respectively (p<0.05). Washing effectively reduced the increased microorganisms from cross contamination during cutting, but cross contamination increased with subsequent GP drying and milling procedures to 8.56, 8.27 and 3.71 ($log_{10}$ CFU/g) for TAB, YM and coliforms, respectively (p<0.05). On the other hand, HP washing of carrots with 3 ppm ozone in combination with 1% citric acid showed higher antimicrobial effect than GP washing, significantly decreasing the number of microorganisms (p<0.05). Further cross contamination did not occur through drying and milling due to cleaning the equipments with 70% alcohol prior to processing. After milling, the number of TAB, YM and coliforms were significantly decreased to 3.89, 4.47 and not detectable level ($log_{10}$ CFU/g), respectively (p<0.05). Similar results were observed in cabbage and grains. During storage for two months at different temperatures (22 or $4^{\circ}C$), there were no changes in numbers of spoilage microorganisms in the packaged saengsik after either processing. This suggests the importance of HP for the reduction of microorganisms during saengsik production, and demonstrates the effectiveness of disinfection at each processing stage in minimizing contamination levels to enhance microbial safety of saengshik products.

Effect of Operating Parameters on Methyl Orange Removal in Catalytic Ozonation (촉매 오존화 공정에서 메틸오렌지 제거에 미치는 운전변수의 영향)

  • Lee, Myoung-Eun;Kim, Ji-Eun;Chung, Jae Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.412-417
    • /
    • 2017
  • Removal characteristics of methyl orange and their dependence on operating parameters in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon enhanced the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting methyl orange degradation. As the carbon dose increases, the pseudo-first order rate constants of methyl orange degradation increased, resulting in the fast removal of methyl orange. The increase of gaseous ozone concentration enhanced the mass transfer to the aqueous solution, therefore, promoted the methyl orange removal. The methyl orange degradation was not significantly affected by the change of pH in the range of 5~12, and TOC removal was negligibly affected by the variation of pH over 7. The results indicate that the catalytic ozonation can be considered as an effective dye treatment technology.

Enhancement of biodegradability of the Refractory Organic Substances in Aqueous Solution with Discharged Water Generating (DWG) System (방전시스템(Discharged Water Generator)을 이용한 난분해성 물질의 생분해능 향상에 관한 연구)

  • Yeo, Inho;Ryu, Seung Min;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.79-85
    • /
    • 2006
  • Innovated technique to oxidize pollutants has been developed. The technique for this study uses plasma discharge in 2-phase (Air-Water) and is called Discharged Water Generating (DWG) system. It produces electric arc which generates not only the physical decomposing power against the pollutants but also oxidants to sterilize pollutants depending on the inlet gas species. These physical and chemical products play an important role in COD decrease and biodegradability enhancement. The enhancement of biodegradability for the refractory organic substances in aqueous solution was estimated in this study. Argon discharge reduced NBDCOD of EDTA from 58.7mg/L to 38.8mg/L, but oxygen discharge and ozonation reduced it to 37.74mg/L and 38.73mg/L respectively. Furthermore, Argon discharge changed 1181mg/L of NBDCOD of dye effluent into 606mg/L but oxygen discharge and ozonation changed it into 888mg/L and 790mg/L respectively.

Investigation on the products generated by the ozonation of Microcystis sp. (Microcystis sp.의 오존접촉특성 및 부산물 생성에 관한 연구)

  • Kim, Young-Ung;Son, Hee-Jong;Yu, Myung-Ho;Lee, Chun-Sik;Kim, Seong-Yun
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.479-490
    • /
    • 2000
  • This study investigated the removal characteristics, Microcystin decomposition and generation of by-products when aqueous Microcystis sp. is oxidized by ozone. The concentration of Microcystin (MC) in aqueous solution has been found by HPLC analysis to decrease continuously by ozonation after the initial, abrupt increase. The kinetic constant of the decomposition of MC-RR and -LR were 0.0596 and 0.0243, respectively. This means that removal efficiency of MC-RR by its oxidative decomposition is preferable compared with that of MC-LR. On the other hand, it has been found that the decomposition product, TOC, exhibits the continuous decrease in the concentration by further ozonation, while DOC and UV-254 increase temporarily until 10 minutes before the decrease. Furthermore, the GC/MSD analysis has revealed that the ozonation of Microcystis sp. for 100minutes affords five kinds of aldehydes, six kinds of alcohols, and trans-1, 2-dimethyl-cyclopropane.

  • PDF

Removal of BrO3- from aqueous solution (수용액에서 브롬산 이온을 제거하는 방법)

  • Lim, Heon-Sung;Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.401-405
    • /
    • 2011
  • The efficient removal of bromate ($BrO_3^-$) from aqueous solutions was investigated using activated alumina. Bromate is a disinfection by-product, generally formed by the reaction of ozone and bromide in drinking water during ozonation process. The removal efficiency was about 90% for bromate (500 ng/mL) ion with acidic activated alumina but over 95% with silver or aluminum treated acidic activated alumina without any treatments of neutral water within 1~2 min.

A Study of Ozonation Characteristics of Bis(2-chloroethyl) Ether (Bis(2-chloroethyl) Ether (BCEE)의 오존산화 특성에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.610-615
    • /
    • 2010
  • In this study ozonation of bis(2-chloroethyl) ether (BCEE) in aqueous solution was performed in a laboratory scale batch reacter. The ozonation process of BCEE was carried out by bubbling ozone at the bottom of reactor containing the BCEE solution. Ozonation was almost complete after 80 min with an ozone concentration of $50{\pm}10mg/L$. Ozonation treatment efficiencies of BCEE were evaluated in terms of $BOD_5$, $COD_{Cr}$, and TOC. In the ozonation of BCEE a 62.79% decrease of the $COD_{Cr}$ and a 57.25% decrease of the TOC lead to biodegradable by-products ($BOD_5/COD_{Cr}$ = 0.39). The results of this research show that wastewaters containing non-biodegradable compounds, such as BCEE can be successfully treated by ozonation followed by bio-treatment. The pseudo first-order rate constants of the ozonation was $2.00{\times}10^{-4}sec^{-1}$ and the activation energy was $10.02kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

Phenol Conversion Properties in Aqueous Solution by Pulsed Corona Discharge (펄스 코로나 방전에 의한 액체상 페놀 전환 특성)

  • Lee, Hyun-Don;Chung, Jae-Woo;Cho, Moo-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • A laboratory scale experiment on phenol conversion properties by pulsed corona discharge process was carried out. Effects of operating parameters such as applied voltage, input oxygen, and electrode geometry on phenol conversion and solution properties were investigated. Electrical discharges generated in liquid phase increased the liquid temperature by heat transfer from current flow, decreased the pH value by producing various organic acids from phenol degradation, and increased conductivity by generating charge carriers and organic acids. The oxygen supply enhanced the phenol conversion through the ozone generation dissolution and the production of OH radicals. Series type electrode configuration induced more ozone production than reference type configuration because it produced gas phase discharges as well as liquid phase discharges. Therefore, the higher phenol conversion and TOC(total organic carbon) removal efficiency were obtained in series type configuration.