• Title/Summary/Keyword: aqueous cyanide

Search Result 18, Processing Time 0.029 seconds

TiO2-catalytic UV-LED Photo-oxidation of Cyanide Contained in Mine Wastewater (광산폐수 내 시안 제거를 위한 TiO2와 UV-LED를 이용한 광촉매 산화)

  • Kim, Seong Hee;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.223-233
    • /
    • 2014
  • Cyanidation method has been used to extract high-purity gold and silver in mining industry. Such mining activities have used a large amount of cyanide, and the mine wastewater contained a high level of cyanide has brought about pollution of surrounding aqueous environments. This research was initiated to study $TiO_2$-catalytic UV-LED photo-oxidation to remove cyanide from the mine wastewater. UV lamp has been generally used as a light source in conventional photo-oxidation so far, but it shows numerous drawbacks. For this reason, this study focused on the evaluation of applicability of UV-LED as an alternative light source in cyanide photo-oxidation process. Three types of $TiO_2$ photo-catalyst were compared in terms of performance of photo-oxidation of cyanide, and the results show that Degussa P25 was the most efficient. In addition, four types of UV-LED were tested to compare their efficiencies of cyanide photo-oxidation, and their efficacy was increased in the order of 365 nm lamp-type > 365 nm can-type > 280 nm can-type > 420 nm lamp-type. Not only did this study demonstrate that UV-LED can be used in the photo-oxidation of cyanide as an alternative light source of UV lamp, but also confirmed that the performance of photo-oxidation was significantly influenced by the type of $TiO_2$ catalysts.

Separation of Gold and Silver from Diverse Solutions by Solvent Extraction (다양한 용액으로부터 용매추출에 의한 금과 은의 분리)

  • Xing, Weidong;Lee, Manseung
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.3-11
    • /
    • 2017
  • Solvent extraction is an important process to recover pure gold and silver from various leaching solutions. The present work reviews the aqueous chemistry and solvent extraction separation of gold (I, III) and silver (I) from several leaching systems such as cyanide, thiocyanate, thiosulfate, thiourea and chloride medium. The extraction and separation behavior of gold (I, III) and silver (I) by various single and mixtures was compared on the basis of extraction reaction and the selectivity from these mediums. The chloride medium is recommended for the separation of gold and silver by solvent extraction in terms of extraction and stripping efficiency.

Characteristics of Copper-catalyzed Cyanide Decomposition by Electrolysis (전해법에 의한 구리함유 시안의 분해특성)

  • Lee Jin-Yeung;Yoon Ho-Sung;Kim Sung-Don;Kim Chul-Joo;Kim Joon-Soo;Han Choon;Oh Jong-Kee
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • The characteristics of cyanide decomposition in aqueous phase by electric oxidization have been explored in an effort to develop a process to recycle waste water. Considering current efficiency and voltage, the free cyanide decomposition experiment by electric oxidization indicated that 5 V of voltage and copper catalytic Cu/CN mole ratio 0.05 was the most appropriate condition, where current efficiency was 26%, and decomposition speed was 5.6 mM/min. High voltage and excess copper addition increased decomposition speed a little bit but not current efficiency. The experiment of free cyanide density change proves that high density cyanide is preferred because speed and current efficiency increase with density. Also, the overall decomposition reaction could be represented by the first order with respcect to cyanide with the rate constant of $1.6∼7.3${\times}$10^{-3}$ $min^{-1}$ The mass transfer coefficient of electric oxidization of cyanide came out as $2.42${\times}$10^{-5}$ $min^{-1}$ Furthermore, the Damkohler number was calculated as 5.7 in case of 7 V and it was found that the mass transfer stage was the rate determining step.

UV Light Induced Photocatalytic Degradation of Cyanides in Aqueous Solution over Modified $TiO_2$

  • Kim, Hyeong Ju;Kim, Jae Hyeon;Lee, Cheong Hak;Hyeon, Taek Hwan;Choe, Won Yong;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1371-1374
    • /
    • 2001
  • Metal doping was adopted to modify TiO2 (P-25) and enhance the photocatalytic degradation of harmful cyanides in aqueous solution. Ni, Cu, Co, and Ag doped TiO2 were found to be active photocatalysts for UV light induced degradation of aqueous cyanides generating cyanate, nitrate and ammonia as main nitrogen-containing products. The photoactivity of Ni doped TiO2 was greatly affected by the state of Ni, that is, the crystal size and the degree of reduction of Ni. The modification effects of some mixed oxides, that is, Ni-Cu/TiO2 were also studied. The activity of Ni-Cu/TiO2 for any ratio of Cu/Ni was higher than that of Ni- or Cu-doped TiO2, and the catalyst at the Cu/Ni ratio of 0.3 showed the highest activity for cyanide conversion.

Solvolysis of Benzoyl Cyanide (시안화 벤조일의 가용매분해반응)

  • Jeong Wha Kim;Ikchoon Lee;Se Chul Sohn;Tae Sup Uhm
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.95-101
    • /
    • 1983
  • The pseudo-first order rate constants have been obtained for the solvolysis of benzoyl cyanide in various aqueous solvent mixtures and ethanol-trifluoroethanol mixtures at 1, 5, 10, 15 and $20^{\circ}C$. Values of n in the Kivinen polt, m values of Grunwald-Winstein polt, $\beta$ values of Leffler relationship and values of m and l in the extended Grunwald-Winstein polt have been calculated and studied the transition state variation caused by solvent changes using the More O'Ferrall polt and quantum mechanical approach. It has been shown that the reaction proceed via the associative $S_N2$ mechanism, using the transition state parameters and quantum mechanical model approach.

  • PDF

Catalysis Reaction for the Formation of Hydrogen Cyanide from Metal Complex (금속착물로부터 HCN 생성에 대한 촉매반응연구)

  • 박흥재
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.439-443
    • /
    • 1994
  • In aqueous acid solution ${[Cr(CN)_6]}^{3-}$ aquates via a series of stepwise stereospecific reactions to give ${[Cr{(H_2O)}_6]}^{3+}$as the final product.Some of the intermediate cyanoaquo complexes in the sequence have been isolated.These complexes aquate by both acid independent and acid denpendent pathways, the latter involving protonation of the cyano ligands followed by aquation of the singly protonated species. The kinetic data for the aquation of {[CrCN{(H_2O)}_5]}^{2+}$ are consistent with the transition state structure ${[{(H_2O)}_4Cr(CN)-OH-Cr{(H_2O)}_5]}^{3+}$. Addition of $Cr^{2+}$ to solutions of cyanocobalt(III) complexes produces the metastable intermediate${[CrNC{(H_2O)}_5]}^{2+}$ This isomerizes to in a $Cr^{2+}$-catalyzed reaction which occurs by a ligand-bridged electron-change mechnism. From acid catalysis on these aquation reactions, it product HCN. Especially, $HSO_3$-ions do the role of catalyst in the formation of HCN from $CrCN^{3-}$

  • PDF

Detection of Abnormally High Amygdalin Content in Food by an Enzyme Immunoassay

  • Cho, A-Yeon;Yi, Kye Sook;Rhim, Jung-Hyo;Kim, Kyu-Il;Park, Jae-Young;Keum, Eun-Hee;Chung, Junho;Oh, Sangsuk
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.308-313
    • /
    • 2006
  • Amygdalin is a cyanogenic glycoside compound which is commonly found in the pits of many fruits and raw nuts. Although amygdalin itself is not toxic, it can release cyanide (CN) after hydrolysis when the pits and nuts are crushed, moistened and incubated, possibly within the gastrointestinal tract. CN reversibly inhibits cellular oxidizing enzymes and cyanide poisoning generates a range of clinical symptoms. As some pits and nuts may contain unusually high levels of amygdalin such that there is a sufficient amount to induce critical CN poisoning in humans, the detection of abnormal content of amygdalin in those pits and nuts can be a life-saving measure. Although there are various methods to detect amygdalin in food extracts, an enzyme immunoassay has not been developed for this purpose. In this study we immunized New Zealand White rabbits with an amygdalin-KLH (keyhole limpet hemocyanin) conjugate and succeeded in raising anti-sera reactive to amygdalin, proving that amygdalin can behave as a hapten in rabbits. Using this polyclonal antibody, we developed a competition enzyme immunoassay for determination of amygdalin concentration in aqueous solutions. This technique was able to effectively detect abnormally high amygdalin content in various seeds and nuts. In conclusion, we proved that enzyme immunoassay can be used to determine the amount of amygdalin in food extracts, which will allow automated analysis with high throughput.

Prediction of removal percentage and adsorption capacity of activated red mud for removal of cyanide by artificial neural network

  • Deihimi, Nazanin;Irannajad, Mehdi;Rezai, Bahram
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.273-281
    • /
    • 2018
  • In this study, the activated red mud was used as a new and appropriate adsorbent for the removal of ferrocyanide and ferricyanide from aqueous solution. Predicting the removal percentage and adsorption capacity of ferro-ferricyanide by activated red mud during the adsorption process is necessary which has been done by modeling and simulation. The artificial neural network (ANN) was used to develop new models for the predictions. A back propagation algorithm model was trained to develop a predictive model. The effective variables including pH, absorbent amount, absorbent type, ionic strength, stirring rate, time, adsorbate type, and adsorbate dosage were considered as inputs of the models. The correlation coefficient value ($R^2$) and root mean square error (RMSE) values of the testing data for the removal percentage and adsorption capacity using ANN models were 0.8560, 12.5667, 0.9329, and 10.8117, respectively. The results showed that the proposed ANN models can be used to predict the removal percentage and adsorption capacity of activated red mud for the removal of ferrocyanide and ferricyanide with reasonable error.