• Title/Summary/Keyword: aqueous chemistry

Search Result 1,709, Processing Time 0.027 seconds

Solvent Effects on Action Spectra for The Photodecomposition of N-Acetylphenylalanyl-L-Tryptophan and 3-Methyl Indole

  • Yoon, Min-Joong;Chung, Bong-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.5
    • /
    • pp.194-198
    • /
    • 1984
  • The UV action spectra and quantum yields for photodestruction of tryptophan (Trp) in peptide such as N-acetylphenylalanyl-L-tryptophan (NAPT) and 3-methyl indole (scatole) were determined in aerated aqueous and organic solvents. The photodestruction of aqueous NAPT was shown to be initiated by photoionization without requirement of threshold energy, as demonstrated by the similarity of fluence effect curves obtained for the action at various wavelengths and the wavelength dependence of quantum yield comparable to that reported for the photoionization of L-Trp. N-formylkynurenine (NFK)-type photoproduct, which is a photodynamic sensitizer, was not found to be involved in the photodestruction of Trp in NAPT in aqueous solution. In contrast, the action spectra of NAPT and scatole in organic solvents have revealed evidences for the significant role of internal photosensitization by NFK-type photoproduct in photolysis of Trp in peptide.

Preparation and Characterization of Peptizable Alumina

  • Lee, Chong-Mok;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.6
    • /
    • pp.329-333
    • /
    • 1985
  • A procedure for the preparation of peptizable pseudoboehmite has been described in detail based upon a process of neutralization of an aqueous aluminum sulfate or chloride solution with aqueous ammonia. In order to obtain peptizable pseudoboehmite products, carefully controlled conditions were required in the whole processes of neutralization, aging, washing, and drying. The optimum conditions experimentally found are the following. The aluminum salt solution is neutralized with aqueous ammonia until the final pH of the solution reaches 10.0 to 10.8 or 9.0 to 9.3 for the sulfate of chloride, respectively. The alumina gel formed is subjected to aging at $80^{\circ}C for about 3 hours and washed with water more than 5 times to reduce the residual sulfate or chloride ion in the final products to less than 4%. The pseudoboehmite gel thus obtained should be dried oven at 80 to $100^{\circ}C for a few to several hours depending on the selected temperatures.

Efficient extraction and recovery of Lignosulfonate using sunflower oil as green solvent in liquid membrane transport: Equilibrium and kinetic study

  • Kumar, Vikas;Singh, Raghubansh K.;Chowdhury, Pradip
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.109-122
    • /
    • 2018
  • This work highlights extraction and removal of Lignosulfonate using sunflower oil-Tri-n-octylamine (TOA) system in bulk liquid membrane transport. Maximum extraction and recovery percentages of 92.4% and 75.2% were achieved. Optimum manifold operating conditions were: 4 vol.% TOA, $2{\pm}0.1$ feed phase pH, 300 rpm stirring speed, at $40^{\circ}C$ with 0.2 (M) $Na_2SO_4$ solution. 1:2 (organic/aqueous) and 1:1 (aqueous/aqueous) phase ratios produced best results. Extraction (36.85 kJ/mol) was found to be intermediate controlled and stripping (54.79 kJ/mol) was chemical reaction controlled. Kinetic estimation of data with higher rate constants for stripping vis-${\grave{a}}$-vis extraction showed latter to be rate determining.

Green synthesis of aluminum-based metal organic framework for the removal of azo dye Acid Black 1 from aqueous media

  • Jung, Kyung-Won;Choi, Brian Hyun;Lee, Seon Yong;Ahn, Kyu-Hong;Lee, Young Jae
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.316-325
    • /
    • 2018
  • Aluminum based metal-organic framework using a di-carboxylate linker succinic acid (Al-SA MOF), are synthesized in water with minimal generation of secondary pollutants. The physicochemical properties of Al-SA MOF were examined, followed by its utility for the adsorption of Acid Black 1 (AB1) in aqueous media. Influences of key parameters such as pH, contact time, initial AB1 concentration,temperature, and selectivity on the adsorption process were assessed. A series of adsorption mechanisms are proposed, which involve electrostatic, hydrogen bonding, and hydrophobic interactions. These findings suggest that Al-SA MOF is a potent candidate in removing complex azo dyes molecules from aqueous media.

Stabilization and Drug Release of Water/Oil/Water Multiple Emulsions : Effect of Glucose in the Outer Aqueous Phase on Osmotic Pressure Reduction (Water/Oil/Water 다중유화의 안정성과 약물 방출: 외부 수상에 포함된 글루코즈에 의한 삼투압 조절 효과)

  • Yoo, Youngtai;Lim, Eun-Jung;Kim, Tae-Yoon;Kim, Dong-Chul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.715-721
    • /
    • 1997
  • W/O/W multiple emulsions were prepared comprising $MgSO_4$ in the inner aqueous phase as a model drug. The stability and drug release behavior of the multiple emulsions were studied using optical microscopy, viscometry and conductometry. Glucose was introduced in the outer aqueous phase to reduce the osmotic pressure gradient across the oil layer arising from the localization of drug molecules in the inner water phase. It was found that the presence of glucose was effective in stabilization of the multiple emulsions and in control of the release rate of drug more evidently when oil phase was partially hydrophilized with cetostearyl alcohol. This may be attributed to the fact that the migration of water accompanying the hydrophilic surfactant to the inner water phase was limited under a reduced osmotic pressure gradient and thereby slow down the destabilization of the oil/inner water interface.

  • PDF

The Successive Complex Formation of Trivalent Lanthanide Ions with Ionophore ETH4120 at the Liquid/Liquid Interface (액체/액체계면에서 삼가 란탄족원소 이온과 중성담체(ETH4120)의 연속적인 착물형성 연구)

  • Choi, In Kyu;Yu, Zemu;Yeon, Jei Won;Chun, Kwan Sik;Kim, Won Ho;Eom, Tae Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.161-166
    • /
    • 1999
  • Transfer of lanthanide ions across the liquid/liquid interface facilitated by ionopore ETH4120 has been studied by using cyclic voltammetry (CV) and chronopotentiometry with cyclic linear current-scanning (CPCLCS) under the condition where the concentration of ETH4120 in nitrobenzene was much smaller than the concentration of lanthanide ions in aqueous solution. One cathodic current peak (transfer from aqueous to nitrobenzene phase) and two anodic current waves (transfer from nitrobenzene to aqueous phase) were observed. The cathodic wave was due to the formation of 1:1 (metal:ligand) complex and two anodic waves showed successive formation of 1:2 and 1:3 complexes in nitrobenzene solution. But there was no cathodic wave corresponding to two anodic waves. The ion transfer mechanism has also been discussed.

  • PDF