DOI QR코드

DOI QR Code

Efficient extraction and recovery of Lignosulfonate using sunflower oil as green solvent in liquid membrane transport: Equilibrium and kinetic study

  • Kumar, Vikas (Department of Chemical Engineering, National Institution of Technology Rourkela) ;
  • Singh, Raghubansh K. (Department of Chemical Engineering, National Institution of Technology Rourkela) ;
  • Chowdhury, Pradip (Department of Chemical Engineering, National Institution of Technology Rourkela)
  • Received : 2017.06.19
  • Accepted : 2018.06.22
  • Published : 2018.11.25

Abstract

This work highlights extraction and removal of Lignosulfonate using sunflower oil-Tri-n-octylamine (TOA) system in bulk liquid membrane transport. Maximum extraction and recovery percentages of 92.4% and 75.2% were achieved. Optimum manifold operating conditions were: 4 vol.% TOA, $2{\pm}0.1$ feed phase pH, 300 rpm stirring speed, at $40^{\circ}C$ with 0.2 (M) $Na_2SO_4$ solution. 1:2 (organic/aqueous) and 1:1 (aqueous/aqueous) phase ratios produced best results. Extraction (36.85 kJ/mol) was found to be intermediate controlled and stripping (54.79 kJ/mol) was chemical reaction controlled. Kinetic estimation of data with higher rate constants for stripping vis-${\grave{a}}$-vis extraction showed latter to be rate determining.

Keywords

References

  1. E. Konowala, A. Modrzejewska-Sikorskaa, M. Motylenkob, L. Klapiszewskic, M. Wysokowskic, V.V. Bazhenovd, D. Rafajab, H. Ehrlichd, G. Milczareka, T. Jesionowskic, Int. J. Biol. Macromol. 85 (2016) 74. https://doi.org/10.1016/j.ijbiomac.2015.12.071
  2. A. Garcia, A. Toledano, L. Serrano, I. Egues, M. Gonzalez, F. Marin, Sep. Purif. Technol. 68 (2009) 193. https://doi.org/10.1016/j.seppur.2009.05.001
  3. M. Norgren, H. Edlund, Curr. Opin. Colloid Interface Sci. 19 (2014) 409. https://doi.org/10.1016/j.cocis.2014.08.004
  4. X. Ouyang, P. Zhang,X. Qiu,Y. Deng,P. Chen, Ind. Eng. Chem.Res.50(2011) 10792. https://doi.org/10.1021/ie200975e
  5. M. Wang, M. Leitch, C.C. Xu, Eur. Polym. J. 45 (2009) 3380. https://doi.org/10.1016/j.eurpolymj.2009.10.003
  6. S.H. Ghaffar, M. Fan, Int. J. Adhes. Adhes. 48 (2014) 92. https://doi.org/10.1016/j.ijadhadh.2013.09.001
  7. D. Feldman, M. Lacasse, L. Beznaczuk, Prog. Polym. Sci. 12 (1986) 271. https://doi.org/10.1016/0079-6700(86)90002-X
  8. Y. Matsushita, S. Yasuda, Bioresour. Technol. 96 (2005) 465. https://doi.org/10.1016/j.biortech.2004.05.023
  9. Y. Qian, X. Qiu, S. Zhu, Green Chem. 17 (2015) 320. https://doi.org/10.1039/C4GC01333F
  10. X. Ouyang, X. Qiu, P. Chen, Colloids Surf. A 282-283 (2006) 489. https://doi.org/10.1016/j.colsurfa.2005.12.020
  11. G. Telysheva, T.E. Dizhbite Paegle, A. Shapatin, I. Demidov, J. Appl. Polym. Sci. 82 (2001) 1013. https://doi.org/10.1002/app.1935
  12. M.V. Alonso, M. Oliet, F. Rodriguez, G. Astarloa, J.M. Echeverria, J. Appl. Polym. Sci 94 (2004) 643. https://doi.org/10.1002/app.20887
  13. C.I. Chiwetelu, V. Hornof, G.H. Neale, A.E. George, Can. J. Chem. Eng. 72 (1994) 534. https://doi.org/10.1002/cjce.5450720320
  14. A. Ansari, M. Pawlik, Miner. Eng. 20 (2007) 600. https://doi.org/10.1016/j.mineng.2006.12.007
  15. E. Konowal, A. Modrzejewska-Sikorska, G. Milczarek, Mater. Lett. 159 (2015) 451. https://doi.org/10.1016/j.matlet.2015.07.052
  16. A. Modrzejewska-Sikorskaa, E. Konowala, L. Klapiszewskib, G. Nowaczykc, S. Jurgac, T. Jesionowskib, G. Milczareka, Int. J. Biol. Macromol. 103 (2017) 403. https://doi.org/10.1016/j.ijbiomac.2017.05.083
  17. G. Milczarek, M. Motylenko, A. Modrzejewska-Sikorska, L. Klapiszewski, M. Wysokowski, V.V. Bazhenov, A. Piasecki, E. Konowal, H. Ehrlich, T. Jesionowski, RSC Adv. 4 (2014) 52476. https://doi.org/10.1039/C4RA08418G
  18. E. Evstigneyev, S. Shevchenko, H. Mayorova, A. Platonow, J. Wood Chem. Technol. 24 (2004) 263.
  19. U. Vainio, R.A. Lauten, R. Serimaa, Langmuir 24 (2008) 7735. https://doi.org/10.1021/la800479k
  20. S.Y. Lin, in: S.Y. Lin, C.W. Dence (Eds.), Methods in Lignin Chemistry, Springer-Verlag Berlin Heidelberg, 1992, pp. 75.
  21. A.K. Kontturi, G. Sundholm, Acta Chem. Scand. Ser. A 40 (1986) 121.
  22. O. Ringena, B. Saake, R. Lehnen, Holzforschung 59 (2005) 405. https://doi.org/10.1515/HF.2005.066
  23. A.P.E. Marques, D.V. Evtuguin, S. Magina, F.M.L. Amado, A. Prates, J. Wood Chem. Technol. 29 (4) (2009) 337. https://doi.org/10.1080/02773810903207762
  24. R.B. Grigg, B.J. Bai, J. Colloid Interface Sci. 279 (2004) 36. https://doi.org/10.1016/j.jcis.2004.06.035
  25. A.V. Pranovich, M. Reunanen, R. Sjoholm, B. Holmbom, J. Wood Chem. Technol. 25 (2005) 109. https://doi.org/10.1080/02773810500191575
  26. I. Sumerskii, P. Korntner, G. Zinovyev, T. Rosenau, A. Potthast, RSC Adv. 5 (2015) 92732. https://doi.org/10.1039/C5RA14080C
  27. K. Chakrabarty, K.V. Krishna, P. Saha, A.K. Ghoshal, J. Membr. Sci. 330 (2009) 135. https://doi.org/10.1016/j.memsci.2008.12.069
  28. K. Chakrabarty, P. Saha, A.K. Ghoshal, J. Membr. Sci. 340 (2009) 84. https://doi.org/10.1016/j.memsci.2009.05.016
  29. K. Chakrabarty, P. Saha, A.K. Ghoshal, J. Membr. Sci. 360 (2010) 34. https://doi.org/10.1016/j.memsci.2010.04.043
  30. A.K. Kontturi, K. Kontturi, P. Niinikoski, G. Sundholm, M. Nielsen, M.S. Lehmann, Acta Chem. Scand. A 44 (1990) 883. https://doi.org/10.3891/acta.chem.scand.44-0883
  31. G. Muthuraman, M. Ibrahim, J. Ind. Eng. Chem. 19 (2013) 444. https://doi.org/10.1016/j.jiec.2012.08.025
  32. G. Muthuraman, T.T. Teng, C.P. Leh, N. Ismail, Desalination 249 (2009) 884. https://doi.org/10.1016/j.desal.2009.09.008
  33. S.H. Chang, T.T. Teng, I. Norli, Chem. Eng. J. 173 (2011) 352. https://doi.org/10.1016/j.cej.2011.07.062
  34. S.S. Madaeni, Z. Jamali, N. Islami, Sep. Purif. Technol. 81 (2011) 116. https://doi.org/10.1016/j.seppur.2011.07.004
  35. L. Klapiszewski, J. Zdarta, T. Szatkowski, M. Wysokowski, M. Nowacka, K. Szwarc-Rzepka, P. Bartczak, K. Siwinska-Stefanska, H. Ehrlich, T. Jesionowski, Cent. Eur. J. Chem. 12 (6) (2014) 719. https://doi.org/10.2478/s11532-014-0523-5
  36. Y. Qian, Y. Deng, C. Yi, H. Yu, X. Qiu, BioRes 6 (2011) 4686.
  37. M. Gorgenyi, J. Dewulf, H.V. Langenhove, K. Heberger, Chemosphere 65 (2006) 802. https://doi.org/10.1016/j.chemosphere.2006.03.029

Cited by

  1. The (CF3C(O)NH)(C6H5CH2NH)2P(O) phosphoric triamide as a novel carrier with excellent efficiency for Cu(ii) in a liquid membrane transport system vol.9, pp.16, 2018, https://doi.org/10.1039/c8ra09118h
  2. Effects of process factors on performances of liquid membrane-based transfer of indole-3-acetic acid vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-02876-x