DOI QR코드

DOI QR Code

Green synthesis of aluminum-based metal organic framework for the removal of azo dye Acid Black 1 from aqueous media

  • Jung, Kyung-Won (Center for Water Resources Cycle Research, Korea Institute of Science and Technology) ;
  • Choi, Brian Hyun (Center for Water Resources Cycle Research, Korea Institute of Science and Technology) ;
  • Lee, Seon Yong (Department of Earth and Environmental Sciences, Korea University) ;
  • Ahn, Kyu-Hong (Center for Water Resources Cycle Research, Korea Institute of Science and Technology) ;
  • Lee, Young Jae (Department of Earth and Environmental Sciences, Korea University)
  • Received : 2018.02.08
  • Accepted : 2018.07.02
  • Published : 2018.11.25

Abstract

Aluminum based metal-organic framework using a di-carboxylate linker succinic acid (Al-SA MOF), are synthesized in water with minimal generation of secondary pollutants. The physicochemical properties of Al-SA MOF were examined, followed by its utility for the adsorption of Acid Black 1 (AB1) in aqueous media. Influences of key parameters such as pH, contact time, initial AB1 concentration,temperature, and selectivity on the adsorption process were assessed. A series of adsorption mechanisms are proposed, which involve electrostatic, hydrogen bonding, and hydrophobic interactions. These findings suggest that Al-SA MOF is a potent candidate in removing complex azo dyes molecules from aqueous media.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. A. Ayati, M.N. Shahrak, B. Tanhaei, M. Sillanpaa, Chemosphere 160 (2016) 30. https://doi.org/10.1016/j.chemosphere.2016.06.065
  2. X. Peng, X. Hu, D. Fu, F.L.Y. Lam, Appl. Surf. Sci. 294 (2014) 71. https://doi.org/10.1016/j.apsusc.2013.11.157
  3. M. Arshadi, F. SalimiVahid, J.W.L. Salvacion, M. Soleymanzadeh, RSC Adv. 4 (2014) 16005. https://doi.org/10.1039/C3RA47756H
  4. J. Goscianska, M. Marciniak, R. Pietrzak, Chem. Eng. J. 247 (2014) 258. https://doi.org/10.1016/j.cej.2014.03.012
  5. A. Mittal, L. Kurup, J. Mittal, J. Hazard. Mater. 146 (2007) 243. https://doi.org/10.1016/j.jhazmat.2006.12.012
  6. S.P.D.M. Blanco, F.B. Scheufele, A.N. Módenes, F.R. Espinoza-Quinones, P. Marin, A.D. Kroumov, C.E. Borba, Chem. Eng. J. 307 (2017) 466. https://doi.org/10.1016/j.cej.2016.08.104
  7. R. Bu, F. Chen, J. Li, W. Li, F. Yang, Colloids Surf. A: Physicochem. Eng. Asp. 511 (2016) 312. https://doi.org/10.1016/j.colsurfa.2016.10.015
  8. K.B. Tan, M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, B. Salamatinia, Sep. Purif. Technol. 150 (2015) 229. https://doi.org/10.1016/j.seppur.2015.07.009
  9. Z. Xiao, M. Zhang, W. Fan, Y. Qian, Z. Yang, B. Xu, Z. Kang, R. Wang, D. Sun, Chem. Eng. J. 326 (2017) 640. https://doi.org/10.1016/j.cej.2017.06.023
  10. S.L. James, Chem. Soc. Rev. 32 (2003) 276. https://doi.org/10.1039/b200393g
  11. M. Jian, B. Liu, G. Zhang, R. Liu, X. Zhang, Colloids Surf A: Physicochem. Eng. Asp. 465 (2015) 67. https://doi.org/10.1016/j.colsurfa.2014.10.023
  12. N.A. Khan, Z. Hasan, S.H. Jhung, J. Hazard. Mater. 244-245 (2013) 444. https://doi.org/10.1016/j.jhazmat.2012.11.011
  13. A.J. Howarth, M.J. Katz, T.C. Wang, A.E. Platero-Prats, K.W. Chapman, J.T. Hupp, O.K. Farha, J. Am. Chem. Soc. 137 (2015) 7488. https://doi.org/10.1021/jacs.5b03904
  14. Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, H.C. Zhou, Chem. Soc. Rev. 45 (2016) 2327. https://doi.org/10.1039/C5CS00837A
  15. S. Duan, J. Li, X. Liu, Y. Wang, S. Zeng, D. Shao, T. Hayat, ACS Sustain. Chem. Eng. 4 (2016) 3368. https://doi.org/10.1021/acssuschemeng.6b00434
  16. Y.C. He, J. Yang, W.Q. Kan, H.M. Zhang, Y.Y. Liu, J.F. Ma, J. Mater. Chem. A 3 (2015) 1675. https://doi.org/10.1039/C4TA05391E
  17. S.H. Huo, X.P. Yan, J. Mater. Chem. 22 (2012) 7449. https://doi.org/10.1039/c2jm16513a
  18. H. Li, X. Cao, C. Zhang, Q. Yu, Z. Zhao, X. Niu, X. Sun, Y. Liu, L. Ma, Z. Li, RSC Adv. 7 (2017) 16273. https://doi.org/10.1039/C7RA01647F
  19. Q. Meng, X. Xin, L. Zhang, F. Dai, R. Wang, D. Sun, J. Mater. Chem. A 3 (2015) 24016. https://doi.org/10.1039/C5TA04989J
  20. S.R. Zhang, J. Li, D.Y. Du, J.S. Qin, S.L. Li, W.W. He, Z.M. Su, Y.Q. Lan, J. Mater. Chem. A 3 (2015) 23426. https://doi.org/10.1039/C5TA07427D
  21. X. Zhu, B. Li, J. Yang, Y. Li, W. Zhao, J. Shi, J. Gu, ACS Appl. Mater. Interfaces 7 (2015) 223. https://doi.org/10.1021/am5059074
  22. S. Karmakar, J. Dechnik, C. Janiak, S. De, J. Hazard. Mater. 303 (2016) 10. https://doi.org/10.1016/j.jhazmat.2015.10.030
  23. K.Y.A. Lin, S.Y. Chen, A.P. Jochems, Mater. Chem. Phys. 160 (2015) 168. https://doi.org/10.1016/j.matchemphys.2015.04.021
  24. N. Zhang, X. Yang, X. Yu, Y. Jia, J. Wang, L. Kong, Z. Jin, B. Sun, T. Luo, J. Liu, Chem. Eng. J. 252 (2014) 220. https://doi.org/10.1016/j.cej.2014.04.090
  25. B. Wang, X.L. Lv, D. Feng, L.H. Xie, J. Zhang, M. Li, Y. Xie, J.R. Li, H.C. Zhou, J. Am. Chem. Soc. 138 (2016) 6204. https://doi.org/10.1021/jacs.6b01663
  26. F. Ke, L.G. Qiu, Y.P. Yuan, F.M. Peng, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, J. Hazard. Mater. 196 (2011) 36. https://doi.org/10.1016/j.jhazmat.2011.08.069
  27. Q.R. Fang, D.Q. Yuan, J. Sculley, J.R. Li, Z.B. Han, H.C. Zhou, Inorg. Chem. 49 (2010) 11637. https://doi.org/10.1021/ic101935f
  28. B.J. Zhu, X.Y. Yu, Y. Jia, F.M. Peng, B. Sun, M.Y. Zhang, T. Luo, J.H. Liu, X.J. Huang, J. Phys. Chem. C 113 (2012) 8601.
  29. M.D. DeFuria, M. Zeller, D.T. Genna, Cryst. Growth Des. 16 (2016) 3530. https://doi.org/10.1021/acs.cgd.6b00488
  30. Y. Han, S. Sheng, F. Yang, Y. Xie, M. Zhao, J.R. Li, J. Mater. Chem. A 3 (2015) 12804. https://doi.org/10.1039/C5TA00963D
  31. Q. Meng, X. Xin, L. Zhang, F. Dai, R. Wang, D. Sun, J. Mater. Chem. A 3 (2015) 24016. https://doi.org/10.1039/C5TA04989J
  32. F. Dai, W. Fan, X. Yuan, Z. Huang, Y. Wang, X. Xin, H. Lin, L. Zhang, R. Wang, D. Sun, Chem. Commun. 53 (2017) 5694. https://doi.org/10.1039/C7CC02134H
  33. E. Haque, J. Jun, S.H. Jhung, J. Hazard. Mater. 185 (2011) 507. https://doi.org/10.1016/j.jhazmat.2010.09.035
  34. S. Khanjani, A. Morsali, Ultrason. Sonochem. 21 (2014) 1424. https://doi.org/10.1016/j.ultsonch.2013.12.012
  35. K.W. Jung, B.H. Choi, C.M. Dao, Y.J. Lee, J.W. Choi, K.H. Ahn, S.H. Lee, J. Ind. Eng. Chem. 59 (2017) 149.
  36. M.R. Mani, R. Chellaswamy, Y.N. Marathe, V.K. Pillai, RSC Adv. 6 (2016) 1907. https://doi.org/10.1039/C5RA22764J
  37. M.R. Mani, R. Chellaswamy, Y.N. Marathe, V.K. Pillai, Chem. Commun. 51 (2015) 10026. https://doi.org/10.1039/C5CC01327E
  38. K.W. Jung, B.H. Choi, K.H. Ahn, S.H. Lee, Appl. Surf. Sci. 423 (2017) 383. https://doi.org/10.1016/j.apsusc.2017.06.172
  39. Y. Liu, G. Zeng, L. Tang, Y. Cai, Y. Pang, Y. Zhang, G. Yang, Y. Zhou, X. He, Y. He, J. Colloid Interface Sci. 448 (2015) 451. https://doi.org/10.1016/j.jcis.2015.02.037
  40. S.M. Maliyekkal, A.K. Sharma, L. Philip, Water Res. 40 (2006) 3497. https://doi.org/10.1016/j.watres.2006.08.007
  41. B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpaa, Chem. Eng. J. 259 (2015) 1. https://doi.org/10.1016/j.cej.2014.07.109
  42. N. Mohammadi, H. Khani, V.K. Gupta, J. Colloid Interface Sci. 362 (2011) 457. https://doi.org/10.1016/j.jcis.2011.06.067
  43. L.A. Sepulveda, C.C. Santana, Environ. Technol. 34 (2013) 967. https://doi.org/10.1080/09593330.2012.724251
  44. C. He, X. Hu, Ind. Eng. Chem. Res. 50 (2011) 14070. https://doi.org/10.1021/ie201469p
  45. T.C. Hsu, Fuel 87 (2008) 3040. https://doi.org/10.1016/j.fuel.2008.03.026
  46. M.R. Samarghandi, M. Zarrabi, A. Amrane, M.M. Soori, M.N. Sepher, Environ. Eng. Manag. J. 12 (2013) 2137. https://doi.org/10.30638/eemj.2013.265
  47. C. Li, Z. Xiong, J. Zhang, C. Wu, J. Chem. Eng. Data 60 (2015) 3414. https://doi.org/10.1021/acs.jced.5b00692
  48. A.S. Semercioz, F. Gogus, A. Celekli, H. Bozkurt, J. Clean. Prod. 165 (2017) 599. https://doi.org/10.1016/j.jclepro.2017.07.159
  49. H. Guedidi, L. Reinert, J.M. Leveque, Y. Soneda, N. Bellakhal, L. Duclaux, Carbon 54 (2013) 432. https://doi.org/10.1016/j.carbon.2012.11.059
  50. H. Liu, L. Chen, J. Ding, RSC Adv. 6 (2016) 48884. https://doi.org/10.1039/C6RA07567C

Cited by

  1. In Situ Synthesis of Nano CuS-Embedded MOF Hierarchical Structures and Application in Dye Adsorption and Hydrogen Evolution Reaction vol.2, pp.8, 2019, https://doi.org/10.1021/acsaem.9b00840
  2. Recent Bio-Advances in Metal-Organic Frameworks vol.25, pp.6, 2020, https://doi.org/10.3390/molecules25061291
  3. Water-based routes for synthesis of metal-organic frameworks: A review vol.63, pp.5, 2020, https://doi.org/10.1007/s40843-019-1264-x
  4. Metal-Organic Frameworks for the Removal of Emerging Organic Contaminants in Water vol.120, pp.16, 2020, https://doi.org/10.1021/acs.chemrev.9b00797
  5. 활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터 vol.26, pp.3, 2018, https://doi.org/10.7464/ksct.2020.26.3.186
  6. Deployment of metal-organic frameworks as robust materials for sustainable catalysis and remediation of pollutants in environmental settings vol.272, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2021.129605
  7. Efficient Synthesis and Characterization of Polyaniline@Aluminium-Succinate Metal-Organic Frameworks Nanocomposite and Its Application for Zn(II) Ion Sensing vol.13, pp.19, 2018, https://doi.org/10.3390/polym13193383
  8. Regenerable zeolitic imidazolate frameworks@agarose (ZIF-8@AG) composite for highly efficient adsorption of Pb(II) from water vol.307, pp.None, 2018, https://doi.org/10.1016/j.jssc.2021.122823