• Title/Summary/Keyword: apriori algorithm

Search Result 108, Processing Time 0.028 seconds

A Study on Design and Implementation of Personalized Information Recommendation System based on Apriori Algorithm (Apriori 알고리즘 기반의 개인화 정보 추천시스템 설계 및 구현에 관한 연구)

  • Kim, Yong
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.4
    • /
    • pp.283-308
    • /
    • 2012
  • With explosive growth of information by recent advancements in information technology and the Internet, users need a method to acquire appropriate information. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Also, users and service providers are growing more and more interested in personalized information recommendation. This study designed and implemented personalized information recommendation system based on AR as a method to provide positive information service for information users as a method to provide positive information service. To achieve the goal, the proposed method overcomes the weaknesses of existing systems, by providing a personalized recommendation method for contents that works in a large-scaled data and user environment. This study based on the proposed method to extract rules from log files showing users' behavior provides an effective framework to extract Association Rule.

Cryptocurrency Recommendation Model using the Similarity and Association Rule Mining (유사도와 연관규칙분석을 이용한 암호화폐 추천모형)

  • Kim, Yechan;Kim, Jinyoung;Kim, Chaerin;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.287-308
    • /
    • 2022
  • The explosive growth of cryptocurrency, led by Bitcoin has emerged as a major issue in the financial market recently. As a result, interest in cryptocurrency investment is increasing, but the market opens 24 hours and 365 days a year, price volatility, and exponentially increasing number of cryptocurrencies are provided as risks to cryptocurrency investors. For that reasons, It is raising the need for research to reduct investors' risks by dividing cryptocurrency which is not suitable for recommendation. Unlike the previous studies of maximizing returns by simply predicting the future of cryptocurrency prices or constructing cryptocurrency portfolios by focusing on returns, this paper reflects the tendencies of investors and presents an appropriate recommendation method with interpretation that can reduct investors' risks by selecting suitable Altcoins which are recommended using Apriori algorithm, one of the machine learning techniques, but based on the similarity and association rules of Bitocoin.

An analysis of students' online class preference depending on the gender and levels of school using Apriori Algorithm (Apriori 알고리즘을 활용한 학습자의 성별과 학교급에 따른 온라인 수업 유형 선호도 분석)

  • Kim, Jinhee;Hwang, Doohee;Lee, Sang-Soog
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • This study aims to investigate the online class preference depending on students' gender and school level. To achieve this aim, the study conducted a survey on 4,803 elementary, middle, and high school students in 17 regions nationwide. The valid data of 4,524 were then analyzed using the Apriori algorithm to discern the associated patterns of the online class preference corresponding to their gender and school level. As a result, a total of 16 rules, including 7 from elementary school students, 4 from middle school students, and 5 from high school students were derived. To be specific, elementary school male students preferred software-based classes whereas elementary female students preferred maker-based classes. In the case of middle school, both male and female students preferred virtual experience-based classes. On the other hand, high school students had a higher preference for subject-specific lecture-based classes. The study findings can serve as empirical evidence for explaining the needs of online classes perceived by K-12 students. In addition, this study can be used as basic research to present and suggest areas of improvement for diversifying online classes. Future studies can further conduct in-depth analysis on the development of various online class activities and models, the design of online class platforms, and the female students' career motivation in the field of science and technology.

A Study on Personalization System Using Web Log and Purchasing Database (웹 로그와 구매 DB를 이용한 개인화 시스템에 관한 연구)

  • 김영태;이성주
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.23-26
    • /
    • 2003
  • In this paper, a methodolgy for customizing web pages for indivisual users is suggested. It shows an efficient way to personalize web pages by predicting one's site access pattern. In addition, the prediction can reflect one's tendency after actual purchase. By using the APRIORI algorithm, one of the association rule search methods, the associativity among the purchase items can be inferred. This inferrence is based on the log data in a web server and database about purchase. Finally, a web page which contains the relationship, relative links on other web pages, and inferred items can be generated after this process.

  • PDF

Product-group Recommendation based on Association Rule Mining and Collaborative Filtering in Ubiquitous Computing Environment (유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천)

  • Kim, Jae-Kyeong;Oh, Hee-Young;Kwon, Oh-Byung
    • Journal of Information Technology Services
    • /
    • v.6 no.2
    • /
    • pp.113-123
    • /
    • 2007
  • In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.

Association Rule by Considering Users Web Site Visiting Time (사용자 웹 사이트 방문 시간을 고려한 연관 규칙)

  • Kang, Hyung-Chang;Kim, Chul-Soo;Lee, Dong-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.104-109
    • /
    • 2006
  • We can offer suitable information to users analyzing the pattern of users. An association rule is one of data mining techniques which can discover the pattern. We use an association rule which considers the web page visiting time and we should the pattern analyse of users. The offered method puts the weights in Web page visiting time of the user and produces an association rule. Weight is web page visiting time unit divide to total of web page visiting time. We offer rather meaningful result the association rule by Apriori algorithm. This method that proposes in the paper offers rather meaningful result Apriori algorithm

Big Data Analysis in School Adjustment Factors using Data Mining

  • Ko, Sujeong
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Data mining technology is applied to various fields because it is a technique for analyzing vast amount of data and finding useful information. In this paper, we propose a big data analysis method that uses Apriori algorithm, which is a data mining technique, to find the related factors that have negative and positive influences on school adjustment. Among Korea Child and Youth Panel Survey(KCYPS), data related to adjustment to school life and data showing parental inclinations were extracted from the data of fourth grade elementary school students, first year middle school students, and high school freshman students, respectively and we have mapped the useful association rules among them. As a result, the factors affecting school adjustment were different according to the timing of the growth process, we were able to find interesting rules by looking for connections between rules. On the other hand, the factors that positively influenced school adjustment were not significantly different from each other, and overall, they were associated with positive variables.

A Fast Algorithm for Mining Association Rules in Web Log Data (상품간 연관 규칙의 효율적 탐색 방법에 관한 연구 : 인터넷 쇼핑몰을 중심으로)

  • 오은정;오상봉
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.621-626
    • /
    • 2003
  • Mining association rules in web log files can be divided into two steps: 1) discovering frequent item sets in web data; 2) extracting association rules from the frequent item sets found in the previous step. This paper suggests an algorithm for finding frequent item sets efficiently The essence of the proposed algorithm is to transform transaction data files into matrix format. Our experimental results show that the suggested algorithm outperforms the Apriori algorithm, which is widely used to discover frequent item sets, in terms of scan frequency and execution time.

  • PDF

Adaptive Parameter Estimation for Noisy ARMA Process (잡음 ARMA 프로세스의 적응 매개변수추정)

  • 김석주;이기철;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.380-385
    • /
    • 1990
  • This Paper presents a general algorithm for the parameter estimation of an antoregressive moving average process observed in additive white noise. The algorithm is based on the Gauss-Newton recursive prediction error method. For the parameter estimation, the output measurement is modelled as an innovation process using the spectral factorization, so that noise free RPE ARMA estimation can be used. Using apriori known properties leads to algorithm with smaller computation and better accuracy be the parsimony principle. Computer simulation examples show the effectiveness of the proposed algorithm.

An Analysis on the Predictor Keyword of Successful Aging: Focused on Data Mining (데이터마이닝을 활용한 성공적 노후 예측 키워드 분석)

  • Hong, Seo-Youn
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.223-234
    • /
    • 2020
  • This research is the association rule analysis using Apriori algorithm of data mining focusing on 32 predictive key words extracted from Hong (2019) affecting successful aging in Korea. And, to examine rules and patterns of those key words or predictive variables, this research used support, confidence, and lift. The data was analyzed with the R version 3. 5. 1 program, and visualized using arulesViz package and visNetwork. It was found that the variables highly associated with successful aging in Korea were 'hobby', 'volunteer service', 'preparation', and 'exercise'. This research concludes that, the variable which needs to be considered first of all for successful aging in Korea is 'hobby', followed by 'volunteer service', 'preparation', and 'exercise'.