• Title/Summary/Keyword: approximation technique

Search Result 558, Processing Time 0.032 seconds

Signal Transient and Crosstalk Model of Capacitively and Inductively Coupled VLSI Interconnect Lines

  • Kim, Tae-Hoon;Kim, Dong-Chul;Eo, Yung-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.260-266
    • /
    • 2007
  • Analytical compact form models for the signal transients and crosstalk noise of inductive-effect-prominent multi-coupled RLC lines are developed. Capacitive and inductive coupling effects are investigated and formulated in terms of the equivalent transmission line model and transmission line parameters for fundamental modes. The signal transients and crosstalk noise expressions of two coupled lines are derived by using a waveform approximation technique. It is shown that the models have excellent agreement with SPICE simulation.

Adaptive Neural Control of Flexible-Joint Robots Considering Motor Dynamics (모터 동력학식을 고려한 유연 연결 로봇의 적응 신경망 제어)

  • Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1761-1762
    • /
    • 2008
  • In this paper, we propose an adaptive neural control method to solve this problem. It is assumed that the model uncertainties of the robots dynamics, joint flexibility, and motor dynamics are unknown. The dynamic surface design method is applied, and all uncertainties in the robot and motor dynamics are compensated by using the adaptive function approximation technique. Simulation results for three-link electrically driven flexible-joint (EDFJ) manipulators are provided to validate the effectiveness of the proposed control system.

  • PDF

Electromagnet Design for 10 MeV AVF Cyclotron Using the Sequential Approximation Technique (순차적 근사화기법을 이용한 10 MeV AVF 사이클로트론 전자석 설계)

  • Kim, Su-Hun;Kwak, Chang-Seob;Lee, Se-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.788-789
    • /
    • 2015
  • 본 논문에서는 사이클로트론 전자석의 설계과정을 체계화하고, 자기장 최적화 과정을 순차적 근사화 기법을 이용하여 설계를 진행하였다. 설계하는 전자석은 방사성동위원소생산을 목적으로하는 PET(Positron Emission Tomography) 사이클로트론 이며, 크기를 줄이고 동위원소의 효율적인 생산을 위해 에너지대역은 10MeV로 선정하였다. 설계과정은 실험계획법 중 하나인 LHS(Latin Hypercube Sampling) 기법을 통해 샘플 데이터를 구성하고, 이를 바탕으로 크리깅을 이용해 근사모델을 구성한다. 근사 모델과 진화 알고리즘을 이용해 목적에 맞는 최적의 형상을 찾을 수 있다. 이러한 과정을 반복함으로써 점진적으로 목적에 부합하는 형상을 찾을 수 있다. 각각의 형상의 성능을 판단하는 목적함수를 단계별로 규칙을 정함으로써 결과의 신뢰도를 높인다. 이로써 시간적 효율을 증대시키고 전문지식이 부족한 설계자도 고성능의 형상을 얻을 수 있다. 최적화과정은 STEP1과 STEP2로 나누어 진행되며, STEP1에서는 초기사이클로트론 전자석을 설계하고, 자기장 최적화를 진행한다. STEP2에서는 빔 시뮬레이션 및 분석을 통하여 최적화를 진행하고, 최종적으로 전자석모델을 완성한다.

  • PDF

Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation

  • Daraei, Behnam;Shojaee, Saeed;Hamzehei-Javaran, Saleh
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.37-49
    • /
    • 2020
  • In this paper, free vibration finite element analysis of axially moving laminated composite beams subjected to axial tension is studied. It is assumed that the beam has a constant axial velocity and is subject to uniform axial tension. The analysis is based on higher-order theories that have been presented by Carrera Unified Formulation (CUF). In the CUF technique, the three dimensional (3D) displacement fields are expressed as the approximation of the arbitrary order of the displacement unknowns over the cross-section. This higher-order expansion is considered in equivalent single layer (ESL) model. The governing equations of motion are obtained via Hamilton's principle. Finally, several numerical examples are presented and the effect of the ply-angle, travelling speed and axial tension on the natural frequencies and beam stability are demonstrated.

A NEW SOLUTION METHOD FOR STATE EQUATIONS OF NONLINEAR SYSTEM

  • Zhang, Cheng-Hui;Tan, Cheng-Hui;Cui, Na-Xin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.175-184
    • /
    • 1999
  • Along with the computation and analysis for nonlinear system being more and more involved in the fields such as automation control electronic technique and electrical power system the nonlin-ear theory has become quite a attractive field for academic research. In this paper we derives the solutions for state equation of nonlinear system by using the inverse operator expression of the so-lutions is obtained. An actual computation example is given giving a comparison between IOM and Runge-kutta method. It has been proved by our investigation that IOM has some distinct advantages over usual approximation methods in that it is computationally con-venient rapidly convergent provides accurate solutions not requiring perturbation linearization or the massive computation inherent in discrietization methods such as finite differences. So the IOM pro-vides an effective method for the solution of nonlinear system is of potential application valuable in nonlinear computation.

Levy-Type Swaption Pricing Model (Levy-Swaption 가치 평가 모형)

  • Lee, Joon-Hee;Park, Jong-Woo
    • Korean Management Science Review
    • /
    • v.25 no.3
    • /
    • pp.1-12
    • /
    • 2008
  • The Swaption is one of the popular Interest rates derivatives. In spite of such a popularity, the swaption pricing formula is hard to derived within the theoretical consistency. Most of swaption pricing model are heavily depending on the simulation technique. We present a new class of swaption model based on the multi-factor HJM levy-mixture model. A key contribution of this paper is to provide a generalized swaption pricing formula encompassing many market stylize facts. We provide an approximated closed form solution of the swaption price using the Gram-Charlier expansion. Specifically, the solution form is similar to the market models, since our approximation is based on the Lognormal distribution. It can be directly compared with the traditional Black's formula when the size of third and fourth moments are not so large. The proposed extended levy model is also expected to be capable of producing the volatility smiles and skewness.

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.

Numerical Study on the Cooling of Induction Motor In a Washing Machine (세탁기용 유도모터의 냉각에 관한 수치적 연구)

  • Hong, Sang-Wook;Jeon, Si-Moon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.266-271
    • /
    • 2003
  • The numerical study was carried out to effectively cool Induction motor applied to a washing machine. The outer rotor made of steel periodically spins up and down. The stator consists of the thin layered iron plates and copper coil. The effective cooling system is necessary to solve the reliability problem caused by the electric losses at the coil and the iron plate. Because the heat transfer rate of the natural convection in partially open space is generally low, thus it is necessary to enhance the heat transfer using rotating perforated plate. The flow phenomena around the motor are very complex due to the motor geometry and the outer rotor motion. The mixed convection takes place due to the slow rotation speed. The three dimensional flow simulation was performed using rotating reference frame technique and Boussinesq approximation but the radiation effect was neglected. It was found that the angle and direction of the cooling blades play an important role in the stator temperature.

  • PDF

Adaptive Flux Observer with On-line Inductance Estimation of an Interior PM Synchronous Machine Considering Magnetic Saturation

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 2009
  • This paper presents an adaptive flux observer to estimate stator flux linkage and stator inductances of an interior permanent-magnet synchronous machine considering magnetic saturation. The concept of static and dynamic inductances due to saturation is introduced in the machine model to describe the relationship between current and flux linkage and the relationship between their time derivatives. A flux observer designed in the stationary reference frame with constant inductance is analyzed in the rotor reference frame by a frequency-response characteristic. An adaptive algorithm for an on-line inductance estimation is proposed and a Lyapunov-based analysis is given to discuss its stability. The dynamic inductances are estimated by using Taylor approximation based on the static inductances estimated by the adaptive method. The simulation and experimental results show the feasibility and performance of the proposed technique.

Opposition Based Differential Evolution Algorithm for Capacitor Placement on Radial Distribution System

  • Muthukumar, R.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Distribution system is a critical link between customer and utility. The control of power loss is the main factor which decides the performance of the distribution system. There are two methods such as (i) distribution system reconfiguration and (ii) inclusion of capacitor banks, used for controlling the real power loss. Considering the improvement in voltage profile with the power loss reduction, later method produces better performance than former method. This paper presents an advanced evolutionary algorithm for capacitor inclusion for loss reduction. The conventional sensitivity analysis is used to find the optimal location for the capacitors. In order to achieve a better approximation for the current candidate solution, Opposition based Differential Evolution (ODE) is introduced. The effectiveness of the proposed technique is validated through 10, 33, 34 and85-bus radial distribution systems.