• Title/Summary/Keyword: approximation model

Search Result 1,476, Processing Time 0.023 seconds

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF

Effects of tsunami waveform on overtopping and inundation on a vertical seawall (직립호안에서 지진해일 파형이 월파와 침수에 미치는 영향)

  • Lee, Woodong;Kim, Jungouk;Park, Jongryul;Hur, Dongsoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.643-654
    • /
    • 2018
  • In order to generate the stable tsunami in a numerical wave tank, a two-dimensional numerical model, LES-WASS-2D has been introduced the non-reflected wave generation system for various tsunami waveforms. And then, comparing to existing experimental results it is revealed that computed results of the LES-WASS-2D are in good agreement with the experimental results on spatial and temporal tsunami waveforms in the vicinity of a seawall. It is shown that the applied model in this study is applicable to the numerical simulations on tsunami overtopping and inundation. Using the numerical results, the characteristics of overtopping and inundation on a seawall are also discussed with volume ratio of tsunami and relative tsunami height. The wider the tsunami waveform, tsunami overtopping quantity and inundation distances are linearly increased. Therefore, the hydraulic characteristics is highly likely to be underestimated against the real tsunami if the solitary wave of approximation theory is applied for the overtopping/inundation simulations due to a tsunami.

Development of a Triage Competency Scale for Emergency Nurses (응급실 간호사의 중증도 분류 역량 측정도구 개발)

  • Moon, Sun Hee;Park, Yeon Hwan
    • Journal of Korean Academy of Nursing
    • /
    • v.48 no.3
    • /
    • pp.362-374
    • /
    • 2018
  • Purpose: This study aimed to develop a triage competency scale (TCS) for emergency nurses, and to evaluate its validity and reliability. Methods: Preliminary items were derived based on the attributes and indicators elicited from a concept analysis study on triage competency. Ten experts assessed whether the preliminary items belonged to the construct factor and determined the appropriateness of each item. A revised questionnaire was administered to 250 nurses in 18 emergency departments to evaluate the reliability and validity of the scale. Data analysis comprised item analysis, confirmatory factor analysis, contrasted group validity, and criterion-related validity, including criterion-related validity of the problem solving method using video scenarios. Results: The item analysis and confirmatory factor analysis yielded 5 factors with 30 items; the fit index of the derived model was good (${\chi}^2/df=2.46$, Root Mean squared Residual=.04, Root Mean Squared Error of Approximation=.08). Additionally, contrasted group validity was assessed. Participants were classified as novice, advanced beginner, competent, and proficient, and significant differences were observed in the mean score for each group (F=6.02, p=.001). With reference to criterion-related validity, there was a positive correlation between scores on the TCS and the Clinical Decision Making in Nursing Scale (r=.48, p<.001). Further, the total score on the problem solving method using video scenarios was positively correlated with the TCS score (r=.13, p=.04). The Cronbach's ${\alpha}$ of the final model was .91. Conclusion: Our TCS is useful for the objective assessment of triage competency among emergency nurses and the evaluation of triage education programs.

Alterations of papilla dimensions after orthodontic closure of the maxillary midline diastema: a retrospective longitudinal study

  • Jeong, Jin-Seok;Lee, Seung-Youp;Chang, Moontaek
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.3
    • /
    • pp.197-206
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate alterations of papilla dimensions after orthodontic closure of the diastema between maxillary central incisors. Methods: Sixty patients who had a visible diastema between maxillary central incisors that had been closed by orthodontic approximation were selected for this study. Various papilla dimensions were assessed on clinical photographs and study models before the orthodontic treatment and at the follow-up examination after closure of the diastema. Influences of the variables assessed before orthodontic treatment on the alterations of papilla height (PH) and papilla base thickness (PBT) were evaluated by univariate regression analysis. To analyze potential influences of the 3-dimensional papilla dimensions before orthodontic treatment on the alterations of PH and PBT, a multiple regression model was formulated including the 3-dimensional papilla dimensions as predictor variables. Results: On average, PH decreased by 0.80 mm and PBT increased after orthodontic closure of the diastema (P<0.01). Univariate regression analysis revealed that the PH (P=0.002) and PBT (P=0.047) before orthodontic treatment influenced the alteration of PH. With respect to the alteration of PBT, the diastema width (P=0.045) and PBT (P=0.000) were found to be influential factors. PBT before the orthodontic treatment significantly influenced the alteration of PBT in the multiple regression model. Conclusions: PH decreased but PBT increased after orthodontic closure of the diastema. The papilla dimensions before orthodontic treatment influenced the alterations of PH and PBT after closure of the diastema. The PBT increased more when the diastema width before the orthodontic treatment was larger.

Family of Cascade-correlation Learning Algorithm (캐스케이드-상관 학습 알고리즘의 패밀리)

  • Choi Myeong-Bok;Lee Sang-Un
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.87-91
    • /
    • 2005
  • The cascade-correlation (CC) learning algorithm of Fahlman and Lebiere is one of the most influential constructive algorithm in a neural network. Cascading the hidden neurons results in a network that can represent very strong nonlinearities. Although this power is in principle useful, it can be a disadvantage if such strong nonlinearity is not required to solve the problem. 3 models are presented and compared empirically. All of them are based on valiants of the cascade architecture and output neurons weights training of the CC algorithm. Empirical results indicate the followings: (1) In the pattern classification, the model that train only new hidden neuron to output layer connection weights shows the best predictive ability; (2) In the function approximation, the model that removed input-output connection and used sigmoid-linear activation function is better predictability than CasCor algorithm.

Adaptive Model-Based Quantization Parameter Decision for Video Rate Control (비디오 비트율 제어를 위한 적응적 모델 기반의 양자화 변수 결정 방법)

  • Kim, Seon-Ki;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.411-417
    • /
    • 2007
  • The rate control is an essential component in video coding to provide better quality under given coding constraints, such as channel capacity, frame rates, etc. In general, source data cannot be described as a single distribution in a video coding, hence it can cause an exhaustive approximation problem. It drops a coding efficiency under weak channel environments, such as mobile communications. In this paper, we design a new quantization parameter decision model that is based on a rate-distortion function of generalized Gaussian distribution. In order to adaptively express various source data distribution, we decide a shape parameter by observing a ratio of samples, which have a small value. For experiment, the proposed algorithm is implemented into H.264/AVC video codec, and its performance is compared with that of MPEG-2 TM5, H.263 TMN8 rate control algorithm. As shown in simulation results, the proposed algorithm provides an improved quality rather than previous algorithms and generates the number of bits closed to the target bits.

Investigation on the performance of a new pure torsional yielding damper

  • Mahyari, Shahram Lotfi;Riahi, Hossein Tajmir;Esfahanian, Mahmoud Hashemi
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.515-530
    • /
    • 2020
  • A new type of pure torsional yielding damper made from steel pipe is proposed and introduced. The damper uses a special mechanism to apply force and therefore applies pure torsion in the damper. Uniform distribution of the shear stress caused by pure torsion resulting in widespread yielding along pipe and consequently dissipating a large amount of energy. The behavior of the damper is investigated analytically and the governing relations are derived. To examine the performance of the proposed damper, four types of the damper are experimentally tested. The results of the tests show the behavior of the system as stable and satisfactory. The behavior characteristics include initial stiffness, yielding load, yielding deformation, and dissipated energy in a cycle of hysteretic behavior. The tests results were compared with the numerical analysis and the derived analytical relations outputs. The comparison shows an acceptable and precise approximation by the analytical outputs for estimation of the proposed damper behavior. Therefore, the relations may be applied to design the braced frame system equipped by the pure torsional yielding damper. An analytical model based on analytical relationships was developed and verified. This model can be used to simulate cyclic behavior of the proposed damper in the dynamic analysis of the structures equipped with the proposed damper. A numerical study was conducted on the performance of an assumed frame with/without proposed damper. Dynamic analysis of the assumed frames for seven earthquake records demonstrate that, equipping moment-resisting frames with the proposed dampers decreases the maximum story drift of these frames with an average reduction of about 50%.

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

Sensitivity Approach of Sequential Sampling Using Adaptive Distance Criterion (적응거리 조건을 이용한 순차적 실험계획의 민감도법)

  • Jung, Jae-Jun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1217-1224
    • /
    • 2005
  • To improve the accuracy of a metamodel, additional sample points can be selected by using a specified criterion, which is often called sequential sampling approach. Sequential sampling approach requires small computational cost compared to one-stage optimal sampling. It is also capable of monitoring the process of metamodeling by means of identifying an important design region for approximation and further refining the fidelity in the region. However, the existing critertia such as mean squared error, entropy and maximin distance essentially depend on the distance between previous selected sample points. Therefore, although sufficient sample points are selected, these sequential sampling strategies cannot guarantee the accuracy of metamodel in the nearby optimum points. This is because criteria of the existing sequential sampling approaches are inefficient to approximate extremum and inflection points of original model. In this research, new sequential sampling approach using the sensitivity of metamodel is proposed to reflect the response. Various functions that can represent a variety of features of engineering problems are used to validate the sensitivity approach. In addition to both root mean squared error and maximum error, the error of metamodel at optimum points is tested to access the superiority of the proposed approach. That is, optimum solutions to minimization of metamodel obtained from the proposed approach are compared with those of true functions. For comparison, both mean squared error approach and maximin distance approach are also examined.

Analysis of Performance of Focused Beamformer Using Water Pulley Model Array (수차 모형 배열을 이용한 표적추정 (Focused) 빔형성기 성능분석)

  • 최주평;이원철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.83-91
    • /
    • 2001
  • This paper proposes the Focused beamforming to estimate the location of target residing near to the observation platform in the underwater environment. The Focused beamforming technique provides the location of target by the coherent summation of a series of incident spherical waveforms considering distinct propagation delay times at the sensor array. But due to the movement of the observation platform and the variation of the underwater environment, the shape of the sensor array is no longer to be linear but it becomes distorted as the platform moves. Thus the Focused beamforming should be peformed regarding to the geometric shape variation at each time. To estimate the target location, the artificial image plane comprised of cells is constructed, and the delays are calculated from each cell where the target could be proximity to sensors for the coherent summation. After the coherent combining, the beam pattern can be obtained through the Focused beamforming on the image plane. Futhermore to compensate the variation of the shape of the sensor array, the paper utilizes the Nth-order polynomial approximation to estimate the shape of the sensor array obeying the water pulley modeling. Simulation results show the performance of the Focused beamforming for different frequency bands of the radiated signal.

  • PDF