• Title/Summary/Keyword: approximation model

Search Result 1,476, Processing Time 0.024 seconds

Buckling of restrained steel columns due to fire conditions

  • Hozjan, Tomaz;Planinc, Igor;Saje, Miran;Srpcic, Stanislav
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.159-178
    • /
    • 2008
  • An analytical procedure is presented for the determination of the buckling load and the buckling temperature of a straight, slender, geometrically perfect, axially loaded, translationally and rotationally restrained steel column exposed to fire. The exact kinematical equations of the column are considered, but the shear strain is neglected. The linearized stability theory is employed in the buckling analysis. Behaviour of steel at the elevated temperature is assumed in accordance with the European standard EC 3. Theoretical findings are applied in the parametric analysis of restrained columns. It is found that the buckling length factor decreases with temperature and depends both on the material model and stiffnesses of rotational and translational restraints. This is in disagreement with the buckling length for intermediate storeys of braced frames proposed by EC 3, where it is assumed to be temperature independent. The present analysis indicates that this is a reasonable approximation only for rather stiff rotational springs.

Social-Aware Collaborative Caching Based on User Preferences for D2D Content Sharing

  • Zhang, Can;Wu, Dan;Ao, Liang;Wang, Meng;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1065-1085
    • /
    • 2020
  • With rapid growth of content demands, device-to-device (D2D) content sharing is exploited to effectively improve the service quality of users. Considering the limited storage space and various content demands of users, caching schemes are significant. However, most of them ignore the influence of the asynchronous content reuse and the selfishness of users. In this work, the user preferences are defined by exploiting the user-oriented content popularity and the current caching situation, and further, we propose the social-aware rate, which comprehensively reflects the achievable contents download rate affected by the social ties, the caching indicators, and the user preferences. Guided by this, we model the collaborative caching problem by making a trade-off between the redundancy of caching contents and the cache hit ratio, with the goal of maximizing the sum of social-aware rate over the constraint of limited storage space. Due to its intractability, it is computationally reduced to the maximization of a monotone submodular function, subject to a matroid constraint. Subsequently, two social-aware collaborative caching algorithms are designed by leveraging the standard and continuous greedy algorithms respectively, which are proved to achieve different approximation ratios in unequal polynomial-time. We present the simulation results to illustrate the performance of our schemes.

3D Shape Reconstruction from 2D Cross-Sections (단면 정보를 이용한 형상의 재구성)

  • Park, H.J.;Kim, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 1993
  • The three dimensional(3D) shape reconstruction from two dimensional(2D) cross-sections can be completed through three main phases : the input compilation, the triangular grid formation, and the smooth surface construction. In the input compilation phase, the cross-sections are analyzed to exctract the input data required for the shape reconstruction. This data includes the number of polygonized contours per cross-section and the vertices defining each polygonized contour. In the triangular grid formation phase, a triangular grid, leading to a polyhedral approximations, is constructed by extracting all the information concerning contour links between two adjacent cross- sections and then performing the appropriate triangulation procedure for each contour link. In the smooth surface construction phase, a smooth composite surface interpolating all vertices on the triangular grid is constructed. Both the smooth surface and the polyhedral approximation can be used as reconstructed models of the object. This paper proposes a new method for reconstructing the geometric model of a 3D objdect from a sequence of planar contours representing 2D cross-sections of the objdect. The method includes the triangular grid formation algorithms for contour closing, one-to-one branching, and one-to-many braanching, and many-to-many branching. The shape reconstruction method has been implemented on a SUN workstation in C.

  • PDF

Flow Analysis and Process Conditions Optimization in a Cavity during Semiconductor Chip Encapsulation (반도체 칩 캡슐화성형 유동해석 및 성형조건 최적화에 관한 연구)

  • 허용정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.67-72
    • /
    • 2001
  • An Effort has been made to more accurately analyze the flow in the chip cavity, particularly to model the flow through the openings in the leadframe and correctly treat the thermal boundary condition at the leadframe. The theoretical analysis of the flow has been done by using the Hele-Shaw approximation in each cavity separated by a leadframe. The cross-flow through the openings in the leadframe has been incorporated into the Hele-Shaw formulation as a mass source term. The optimization program based on the complex method integrated with flow analysis program has been successfully used to obtain the optimal filling conditions to avoid short shot.

  • PDF

Development of Fault Detector for Series Arc Fault in Low Voltage DC Distribution System using Wavelet Singular Value Decomposition and State Diagram

  • Oh, Yun-Sik;Han, Joon;Gwon, Gi-Hyeon;Kim, Doo-Ung;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.766-776
    • /
    • 2015
  • It is well known that series arc faults in Low Voltage DC (LVDC) distribution system occur at unintended points of discontinuity within an electrical circuit. These faults can make circuit breakers not respond timely due to low fault current. It, therefore, is needed to detect the series fault for protecting circuits from electrical fires. This paper proposes a novel scheme to detect the series arc fault using Wavelet Singular Value Decomposition (WSVD) and state diagram. In this paper, the fault detector developed is designed by using three criterion factors based on the RMS value of Singular value of Approximation (SA), Sum of the absolute value of Detail (SD), and state diagram. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. EMTP/MODELS is also utilized to implement the series arc model and WSVD. Simulation results according to various conditions clearly show the effectiveness of the proposed scheme.

Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes

  • Poon, C.W.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.423-437
    • /
    • 2007
  • The empirical mode decomposition (EMD) method is well-known for its ability to decompose a multi-component signal into a set of intrinsic mode functions (IMFs). The method uses a sifting process in which local extrema of a signal are identified and followed by a spline fitting approximation for decomposition. This method provides an effective and robust approach for decomposing nonlinear and non-stationary signals. On the other hand, the IMF components do not automatically guarantee a well-defined physical meaning hence it is necessary to validate the IMF components carefully prior to any further processing and interpretation. In this paper, an attempt to use the EMD method to identify properties of nonlinear elastic multi-degree-of-freedom structures is explored. It is first shown that the IMF components of the displacement and velocity responses of a nonlinear elastic structure are numerically close to the nonlinear normal mode (NNM) responses obtained from two-dimensional invariant manifolds. The IMF components can then be used in the context of the NNM method to estimate the properties of the nonlinear elastic structure. A two-degree-of-freedom shear-beam building model is used as an example to illustrate the proposed technique. Numerical results show that combining the EMD and the NNM method provides a possible means for obtaining nonlinear properties in a structure.

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity (점소성 구성식의 적분에 미치는 선형화 방법의 영향)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

IIR Filter Design of HRTF for Implementation of 3D Sound (입체음향 구현을 위한 머리전달함수의 IIR필터 설계)

  • Kim Pan-Gon;Park Jang-Sik;Kim Hyun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.341-345
    • /
    • 2005
  • In this paper, we propose an algorithm for the approximation of FIR filters by IIR filters. The algorithm is based on a concept of the balanced model reduction. Head-related transfer functions(HRTFs) of dummy-head are approximated by 32-order IIR filters. The binaural sounds using the approximated HRTFs are reproduced by headphone, and serves as a cue of sound image localization. Experiment of sound image are carried out for 10 participants with computer simulation and DSP board respectively. The results of the experiments show that the localization using the approximated HRTFs by IIR filters is the same accuracy as the case of FIR filters that simulate the HRTFs.

  • PDF

Numerical Simulation of Unsteady CH$_4$/Air Jet Diffusion Flame (비정상 CH$_4$/공기 제트 확산화염에 관한 수치모사)

  • Lee, Chang-Eon;O, Chang-Bo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1087-1096
    • /
    • 2001
  • The dynamic structures of unsteady CH$_4$/Air jet diffusion flame with a flame-vortex interaction were numerically investigated. A timed-dependent, axisymmetric computational model and a low mach number approximation were employed in the present calculation. A two-step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including the gravitational effect show that the large outer vortices and the small inner vortices can be well simulated without any additional disturbances near nozzle tip. It was found that the temperature and species concentrations have deviated values even for the same mixture fraction in the flame-vortex interaction region. It was also shown that the flame surface is not deformed by the inner vortex in upstream region, while in downstream region, the flame surface is compressed or stretched by the outer vortex roll-up. The present unsteady jet flame configuration accompanying a flame-vortex interaction is expected to give good implications for the unsteady structures of turbulent flames.