• Title/Summary/Keyword: approximation model

Search Result 1,474, Processing Time 0.022 seconds

Target Strength Prediction of Scaled Model by the Kirchhoff Approximation Method (Kirchhoff 근사 방법을 이용한 축소모델의 표적강도 예측)

  • 김영현;주원호;김재수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.442-445
    • /
    • 2004
  • The acoustic target strength (TS) of submarine is associated with its active detection, positioning and classification. That is, the survivability of submarine depends on its target strength. So it should be managed with all possible means. An anechoic coating to existing submarine or changing of curvature can be considered as major measures to reduce the TS of submarine. It is mainly based on the prediction of its TS. Under this circumstances, a study on the more accurate numerical methods becomes big topic for submarine design. In this paper, Kirchhoff approximation method was adopted as a numerical tool for the physical optics region. Secondly, the scaled models of submarine were built and tested in order to verify its performance. Through the comparison, it was found out that the Kirchhoff approximation method could be good design tool for the prediction of TS of submarine.

  • PDF

Variational Bayesian multinomial probit model with Gaussian process classification on mice protein expression level data (가우시안 과정 분류에 대한 변분 베이지안 다항 프로빗 모형: 쥐 단백질 발현 데이터에의 적용)

  • Donghyun Son;Beom Seuk Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.115-127
    • /
    • 2023
  • Multinomial probit model is a popular model for multiclass classification and choice model. Markov chain Monte Carlo (MCMC) method is widely used for estimating multinomial probit model, but its computational cost is high. However, it is well known that variational Bayesian approximation is more computationally efficient than MCMC, because it uses subsets of samples. In this study, we describe multinomial probit model with Gaussian process classification and how to employ variational Bayesian approximation on the model. This study also compares the results of variational Bayesian multinomial probit model to the results of naive Bayes, K-nearest neighbors and support vector machine for the UCI mice protein expression level data.

An Improvement of the Approximation of the Ruin Probability in a Risk Process (보험 상품 파산 확률 근사 방법의 개선 연구)

  • Lee, Hye-Sun;Choi, Seung-Kyoung;Lee, Eui-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.937-942
    • /
    • 2009
  • In this paper, a continuous-time risk process in an insurance business is considered, where the premium rate is constant and the claim process forms a compound Poisson process. We say that a ruin occurs if the surplus of the risk process becomes negative. It is practically impossible to calculate analytically the ruin probability because the theoretical formula of the ruin probability contains the recursive convolutions and infinite sum. Hence, many authors have suggested approximation formulas of the ruin probability. We introduce a new approximation formula of the ruin probability which extends the well-known De Vylder's and exponential approximation formulas. We compare our approximation formula with the existing ones and show numerically that our approximation formula gives closer values to the true ruin probability in most cases.

An Adaptive Rate Control Using Piecewise Linear Approximation Model (부분 선형 근사 모델을 이용한 적응적 비트율 제어)

  • 조창형;정제창;최병욱
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.194-205
    • /
    • 1997
  • In video compression standards such as MPEG and H.263. rate control is one of the key components for good coding performance. This paper presents a simple adaptive rate control scheme using a piecewise linear approximation model. While conventional buffer control approach is performed by adjusting the quantization parameter linearly according to the buffer fullness. the proposed approach uses a piecewise linear approximation model derived from logarithmic relation between the quantization parameter and bitrate in data compression. In addition. a forward analyzer performed in the spatial domain is used to improve image quality. Simulation results demonstrate that the proposed method provides better performance than the conventional one and reduces the fluctuation of the PSNR per frame while maintaining the quality of the reconstructed frames at a relatively stable level.

  • PDF

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pade Approximation (FDTD법과 Pade 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • 오순수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.396-396
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is $TE_{01{\delta}}$ mode.

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pad Approximation (FDTD 법과 Pad 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • O, Sun-Su;Yun, Jung-Han;Lee, Seong-Mo;Park, Hyo-Dal
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.36-43
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is TE$_{01{\delta}}$ mode.

  • PDF

DESIGN AND VALIDATION OF ROBUST AND AUTONOMOUS CONTROL FOR NUCLEAR REACTORS

  • SHAFFER ROMAN A.;EDWARDS ROBERT M.;LEE KWANG Y.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.139-150
    • /
    • 2005
  • A robust control design procedure for a nuclear reactor has been developed and experimentally validated on the Penn State TRIGA research reactor. The utilization of the robust controller as a component of an autonomous control system is also demonstrated. Two methods of specifying a low order (fourth-order) nominal-plant model for a robust control design were evaluated: 1) by approximation based on the 'physics' of the process and 2) by an optimal Hankel approximation of a higher order plant model. The uncertainty between the nominal plant models and the higher order plant model is supplied as a specification to the ,u-synthesis robust control design procedure. Two methods of quantifying uncertainty were evaluated: 1) a combination of additive and multiplicative uncertainty and 2) multiplicative uncertainty alone. The conclusions are that the optimal Hankel approximation and a combination of additive and multiplicative uncertainty are the best approach to design robust control for this application. The results from nonlinear simulation testing and the physical experiments are consistent and thus help to confirm the correctness of the robust control design procedures and conclusions.

Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator (강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

Numerical Analysis of Nonlinear Effect of Wave on Refraction and Diffraction (파의 굴절 및 회절에 미치는 비선형 효과에 대한 수치해석)

  • 이정규;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • Based on second-order Stokes wave and parabolic approximation, a refraction-diffraction model for linear and nonlinear waves is developed. With the assumption that the water depth is slowly varying, the model equation describes the forward scattered wavefield. The parabolic approximation equations account for the combined effects of refraction and diffraction, while the influences of bottom friction, current and wind have been neglected. The model is tested against laboratory experiments for the case of submerged circular shoal, when both refraction and diffraction are equally significant. Based on Boussinesq equations, the parabolic approximation eq. is applied to the propagation of shallow water waves. In the case without currents, the forward diffraction of Cnoidal waves by a straight breakwater is studied numerically. The formation of stem waves along the breakwater and the relation between the stem waves and the incident wave characteristics are discussed. Numerical experiments are carried out using different bottom slopes and different angles of incidence.

  • PDF

Estimation of Small Area Proportions Based on Logistic Mixed Model

  • Jeong, Kwang-Mo;Son, Jung-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.153-161
    • /
    • 2009
  • We consider a logistic model with random effects as the superpopulation for estimating the small area pro-portions. The best linear unbiased predictor under linear mired model is popular in small area estimation. We use this type of estimator under logistic mixed motel for the small area proportions, on which the estimation of mean squared error is also discussed. Two kinds of estimation methods, the parametric bootstrap and the linear approximation will be compared through a Monte Carlo study in the respects of the normality assumption on the random effects distribution and also the magnitude of sample sizes on the approximation.