• Title/Summary/Keyword: approximate sensitivity

Search Result 93, Processing Time 0.033 seconds

THE SENSITIVITY OF STRUCTURAL RESPONSE USING FINITE ELEMENTS IN TIME

  • Park, Sungho;Kim, Seung-Jo
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.66-80
    • /
    • 2002
  • The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite elements in time to solve undamped linear systems, Is extended (and found to be readily amenable) to develop time finite elements to obtain transient responses of both linear and nonlinear, and damped and undamped systems. The formulation Is used in the h-, p- and hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain the first- and second-order sensitivities of the transient response with respect to various system parameters. The present developments were tested on a series of linear and nonlinear examples and were found to yield, when compared with results obtained using other methods, excellent results for both the transient response and Its sensitivity to system parameters. Mostly. the results were obtained using the Legendre polynomials as basis functions, though. in some cases other orthogonal polynomials namely. the Hermite. the Chebyshev, and integrated Legendre polynomials were also employed (but to no great advantage). A key advantage of the time finite element method, and the one often overlooked in its past applications, is the ease In which the sensitivity of the transient response with respect to various system parameters can be obtained. The results of sensitivity analysis can be used for approximate schemes for efficient solution of design optimization problems. Also. the results can be applied to gradient-based parameter identification schemes.

  • PDF

Optimal Design of the Passenger Vehicle Aluminum Seat for Weight Reduction and Durability Performance Improvement (승용차용 알루미늄 시트의 경량화 및 내구성능 향상을 위한 최적설계)

  • Kim Byung-Kil;Kim Min-Soo;Kim Bum-Jin;Heo Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-63
    • /
    • 2005
  • In order to minimize weight of vehicle seat, an optimum design of aluminum seat is presented while satisfying stress and fatigue life constraints. In this study, the analysis model is validated by comparing it's stress with that of test. Then, two-level orthogonal array is used to estimate the design sensitivity for 7 design variables. Finally, the sequential approximate optimization (SAO) is performed using the constructed RSM models. The approximate RSM models are sequentially updated using the analysis results corresponding to the approximate optimum obtained during the SAO. After 14 analyses, the SAO gives an optimal design that can reduce 16.7$\%$ of weight while increasing 369$\%$ of fatigue life and satisfying stress constraint.

Heat Exchanger Optimization using Progressive Quadratic Response Surface Method (순차적 2 차 반응표면법을 이용한 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Kim, Yang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this study, the shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. To do this, a new sequential approximate optimization (SAO) is proposed and it is integrated with the computational fluid dynamics (CFD). In thermal/fluid systems for constrained nonlinear optimization problems, three fundamental difficulties such as high cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are confronted. To overcome these problems, the progressive quadratic response surface method (PQRSM), which is one of the sequential approximate optimization algorithms, is proposed and the heat sink is optimize by means of the PQRSM.

  • PDF

Development of On-line Dynamic Security Assessment System (온라인 동적 안전도평가 시스템의 개발)

  • Nam, H.K.;Song, S.G.;Shim, K.S.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.73-76
    • /
    • 2001
  • This paper presents a new systematic contingency selection, screening and ranking method for on-line transient security assessment. Transient stability of a particular generator is influenced most by fault near it. Fault at the transmission lines adjacent to the generators are selected as contingency. Two screening methods are developed using the sensitivity of modal synchronizing torque coefficient and computing an approximate critical clearing time(CCT) without time simulation. The first method, which considers only synchronizing power, may mislead in some cases since it does not consider the acceleration power. The approximate CCT method, which consider both the acceleration and deceleration power, worked well. Finally the Single Machine Equivalent(SIME) method is implemented using IPLAN of PSS/E for detailed stability analysis.

  • PDF

Approximate Optimization of High-speed Train Shape and Tunnel Condition to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 열차-터널 조건의 근사최적설계)

  • Kim, Jung-Hui;Lee, Jong-Soo;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1023-1028
    • /
    • 2004
  • A micro-pressure wave is generated by the high-speed train which enters a tunnel, and it causes explosive noise and vibration at the exit. It is known that train speed, train-tunnel area ratio, nose slenderness and nose shape mainly influence on generating micro-pressure wave. So it is required to minimize it by searching optimal values of such train shape factors and tunnel condition. In this study, response surface model, one of approximation models, is used to perform optimization effectively and analyze sensitivity of design variables. Owen's randomized orthogonal array and D-optimal Design are used to construct response surface model. In order to increase accuracy of model, stepwise regression is selected. Finally SQP(Sequential Quadratic Programming) optimization algorithm is used to minimize the maximum micro-pressure wave by using built approximation model.

  • PDF

Sensitivity Approach of Sequential Sampling for Kriging Model (민감도법을 이용한 크리깅모델의 순차적 실험계획)

  • Lee, Tae-Hee;Jung, Jae-Jun;Hwang, In-Kyo;Lee, Chang-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1760-1767
    • /
    • 2004
  • Sequential sampling approaches of a metamodel that sampling points are updated sequentially become a significant consideration in metamodeling technique. Sequential sampling design is more effective than classical space filling design of all-at-once sampling because sequential sampling design is to add new sampling points by means of distance between sampling points or precdiction error obtained from metamodel. However, though the extremum points can strongly reflect the behaviors of responses, the existing sequential sampling designs are inefficient to approximate extremum points of original model. In this research, new sequential sampling approach using the sensitivity of Kriging model is proposed, so that new approach reflects the behaviors of response sequentially. Various sequential sampling designs are reviewed and the performances of the proposed approach are compared with those of existing sequential sampling approaches by using mean squared error. The accuracy of the proposed approach is investigated against optimization results of test problems so that superiority of the sensitivity approach is verified.

Approximate Multi-Objective Optimization of A Wall-mounted Monitor Bracket Arm Considering Strength Design Conditions (강도조건을 고려한 벽걸이 모니터 브라켓 암의 다중목적 근사최적설계)

  • Doh, Jaehyeok;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.535-541
    • /
    • 2015
  • In this study, an approximate multi-objective optimization of a wall-mounted monitor bracket arm was performed. The rotation angle of the bracket arm was determined considering the inplane degree of freedom. We then formulated an optimization problem on maximum stress and deflection. Analyses of mean and design parameters were conducted for sensitivity regarding performance with orthogonal array and response surface method (RSM). RSM models of objective and constraint functions were generated using central composite (CCD) and D-optimal design. The accuracy of approximate models was evaluated through $R^2$ value. The obtained optimal solutions by non-dominant sorting genetic algorithm (NSGA-II) were validated through the finite element analysis and we compared the obtained optimal solution by CCD and D-optimal design.

Estimation of Predictive Value of a Positive Test from a Screening Test

  • Shin, Hyun Chul;Park, Sang Gue;Kim, Yong Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.567-574
    • /
    • 2003
  • The estimation problem of predictive value of a positive test(PVP), which is assessing the accuracy of a screening test is considered. Score methods discussed by Gart and Nam(1988) are proposed for constructing confidence interval for PVP. The simulation studies are conducted in evaluating the proposed methods and existing approximate ones.

FUZZY HYPERCUBES: A New Inference Machines

  • Kang, Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.34-41
    • /
    • 1992
  • A robust and reliable learning and reasoning mechanism is addressed based upon fuzzy set theory and fuzzy associative memories. The mechanism stores a priori an initial knowledge base via approximate learning and utilizes this information for decision-making systems via fuzzy inferencing. We called this fuzzy computer architecture a 'fuzzy hypercube' processing all the rules in one clock period in parallel. Fuzzy hypercubes can be applied to control of a class of complex and highly nonlinear systems which suffer from vagueness uncertainty. Moreover, evidential aspects of a fuzzy hypercube are treated to assess the degree of certainty or reliability together with parameter sensitivity.

  • PDF

Stochastic Order Level Inventory System with Dependent Lead Times (제품인도기간에 함수인 확률적 주문수준 재고정책에 관한 연구)

  • Kim, Yeong-Min
    • Journal of Korean Society for Quality Management
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 1986
  • This paper deals with probabilistic order level inventory system which the quantity ordered at the end of the scheduling period is dependent on lead times. To find an optimal solution, pearson system of distributions is used to approximate the probability density function of the on-order quantity. An example is solved and sensitivity analysis is performed to examine the relation between lead times and the ordering quantity.

  • PDF