• Title/Summary/Keyword: approximate approach

Search Result 521, Processing Time 0.027 seconds

Sensitivity Approach of Sequential Sampling Using Adaptive Distance Criterion (적응거리 조건을 이용한 순차적 실험계획의 민감도법)

  • Jung, Jae-Jun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1217-1224
    • /
    • 2005
  • To improve the accuracy of a metamodel, additional sample points can be selected by using a specified criterion, which is often called sequential sampling approach. Sequential sampling approach requires small computational cost compared to one-stage optimal sampling. It is also capable of monitoring the process of metamodeling by means of identifying an important design region for approximation and further refining the fidelity in the region. However, the existing critertia such as mean squared error, entropy and maximin distance essentially depend on the distance between previous selected sample points. Therefore, although sufficient sample points are selected, these sequential sampling strategies cannot guarantee the accuracy of metamodel in the nearby optimum points. This is because criteria of the existing sequential sampling approaches are inefficient to approximate extremum and inflection points of original model. In this research, new sequential sampling approach using the sensitivity of metamodel is proposed to reflect the response. Various functions that can represent a variety of features of engineering problems are used to validate the sensitivity approach. In addition to both root mean squared error and maximum error, the error of metamodel at optimum points is tested to access the superiority of the proposed approach. That is, optimum solutions to minimization of metamodel obtained from the proposed approach are compared with those of true functions. For comparison, both mean squared error approach and maximin distance approach are also examined.

A Study of Fatigue Life Prediction for Automotive Spot Weldment Using Local Strain Approach (국부변형률근사법을 이용한 차체 점용접부의 피로수명 예측에 관한 연구)

  • Lee, Song-In;Gwon, Il-Hyeon;Lee, Beom-Jun;Yu, Hyo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.220-227
    • /
    • 2001
  • The fatigue crack initiation life is studied on automotive tensile-shear spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. To predict the fatigue life of spot weldment, the local stresses and strains at the potential critical region are estimated by approximate method based on Neubers rule and elastic-plastic FEM analysis. A satisfactory correlation between the predicted life obtained from Local strain approach based on Neubers rule and experimental life can be found in spot weldment within a factor of 2.

A MULTI-SERVER RETRIAL QUEUEING MODEL WITH POISSON SIGNALS

  • CHAKRAVARTHY, SRINIVAS R.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.601-616
    • /
    • 2021
  • Retrial queueing models have been studied extensively in the literature. These have many practical applications, especially in service sectors. However, retrial queueing models have their own limitations. Typically, analyzing such models involve level-dependent quasi-birth-and-death processes, and hence some form of a truncation or an approximate method or simulation approach is needed to study in steady-state. Secondly, in general, the customers are not served on a first-come-first-served basis. The latter is the case when a new arrival may find a free server while prior arrivals are waiting in the retrial orbit due to the servers being busy during their arrivals. In this paper, we take a different approach to the study of multi-server retrial queues in which the signals are generated in such a way to provide a reasonably fair treatment to all the customers seeking service. Further, this approach makes the study to be level-independent quasi-birth-and-death process. This approach is different from any considered in the literature. Using matrix-analytic methods we analyze MAP/M/c-type retrial queueing models along with Poisson signals in steady-state. Illustrative numerical examples including a comparison with previously published retrial queues are presented and they show marked improvements in providing a quality of service to the customers.

Control of pH Neutralization Process using Simulation Based Dynamic Programming in Simulation and Experiment (ICCAS 2004)

  • Kim, Dong-Kyu;Lee, Kwang-Soon;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.620-626
    • /
    • 2004
  • For general nonlinear processes, it is difficult to control with a linear model-based control method and nonlinear controls are considered. Among the numerous approaches suggested, the most rigorous approach is to use dynamic optimization. Many general engineering problems like control, scheduling, planning etc. are expressed by functional optimization problem and most of them can be changed into dynamic programming (DP) problems. However the DP problems are used in just few cases because as the size of the problem grows, the dynamic programming approach is suffered from the burden of calculation which is called as 'curse of dimensionality'. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach is proposed by Bertsekas and Tsitsiklis (1996). To get the solution of seriously nonlinear process control, the interest in NDP approach is enlarged and NDP algorithm is applied to diverse areas such as retailing, finance, inventory management, communication networks, etc. and it has been extended to chemical engineering parts. In the NDP approach, we select the optimal control input policy to minimize the value of cost which is calculated by the sum of current stage cost and future stages cost starting from the next state. The cost value is related with a weight square sum of error and input movement. During the calculation of optimal input policy, if the approximate cost function by using simulation data is utilized with Bellman iteration, the burden of calculation can be relieved and the curse of dimensionality problem of DP can be overcome. It is very important issue how to construct the cost-to-go function which has a good approximate performance. The neural network is one of the eager learning methods and it works as a global approximator to cost-to-go function. In this algorithm, the training of neural network is important and difficult part, and it gives significant effect on the performance of control. To avoid the difficulty in neural network training, the lazy learning method like k-nearest neighbor method can be exploited. The training is unnecessary for this method but requires more computation time and greater data storage. The pH neutralization process has long been taken as a representative benchmark problem of nonlin ar chemical process control due to its nonlinearity and time-varying nature. In this study, the NDP algorithm was applied to pH neutralization process. At first, the pH neutralization process control to use NDP algorithm was performed through simulations with various approximators. The global and local approximators are used for NDP calculation. After that, the verification of NDP in real system was made by pH neutralization experiment. The control results by NDP algorithm was compared with those by the PI controller which is traditionally used, in both simulations and experiments. From the comparison of results, the control by NDP algorithm showed faster and better control performance than PI controller. In addition to that, the control by NDP algorithm showed the good results when it applied to the cases with disturbances and multiple set point changes.

  • PDF

A Unified Approach to Exact, Approximate, Optimized and Decentralized Output Feedback Pole Assignment

  • Tarokh, Mahmoud
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.939-947
    • /
    • 2008
  • The paper proposes a new formulation of the output feedback pole assignment problem. In this formulation, a unified approach is presented for solving the pole assignment problem with various additional objectives. These objectives include optimizing a variety of performance indices, and imposing constraints on the output feedback matrix structure, e.g. decentralized structure. Conditions for the existence of the output feedback are discussed. However, the thrust of the paper is on the development of a convergent pole assignment algorithm. It is shown that when exact pole assignment is not possible, the method can be used to place the poles close to the desired locations. Examples are provided to illustrate the method.

Trajectory Estimation of a Moving Object using Kohonen Networks

  • Ju, Jin-Hwa;Lee, Dong-Hui;Lee, Jae-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2033-2036
    • /
    • 2004
  • A novel approach to estimate the real time moving trajectory of an object is proposed in this paper. The object position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Kalman filter and neural networks are utilized. Since the Kalman filter needs to approximate a non-linear system into a linear model to estimate the states, there always exist errors as well as uncertainties again. To resolve this problem, the neural networks are adopted in this approach, which have high adaptability with the memory of the input-output relationship. Kohonen Network(Self-Organized Map) is selected to learn the motion trajectory since it is spatially oriented. The superiority of the proposed algorithm is demonstrated through the real experiments.

  • PDF

Proposed large-scale modelling of the transient features of a downburst outflow

  • Lin, W.E.;Orf, L.G.;Savory, E.;Novacco, C.
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.315-346
    • /
    • 2007
  • A preceding companion article introduced the slot jet approach for large-scale quasi-steady modelling of a downburst outflow. This article extends the approach to model the time-dependent features of the outflow. A two-dimensional slot jet with an actuated gate produces a gust with a dominant roll vortex. Two designs for the gate mechanism are investigated. Hot-wire anemometry velocity histories and profiles are presented. As well, a three-dimensional, subcloud numerical model is used to approximate the downdraft microphysics, and to compute stationary and translating outflows at high resolution. The evolution of the horizontal and vertical velocity components is examined. Comparison of the present experimental and numerical results with field observations is encouraging.

Identification of Dominant Plate Component for Local Buckling of Orthotropic I-Shape Compression Member (직교이방성 I형 단면 압축재의 국부좌굴 주도요소판별)

  • 김학군;채수하;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.9-14
    • /
    • 2000
  • This paper presents the analytical results of local buckling of orthotropic I-shape compression members. Employing the equilibrium approach, the characteristic equation for local buckling of I-shape compression member is derived. Using the derived equation, the minimum buckling coefficients with respect to the ratio of width to thickness for the I-shape column are suggested as a graphical form. In addition, the dominant plate component initiating the local buckling of I-shape column is also identified by using the approximate solution and the results are plotted with dotted line on the minimum bucking coefficient curve.

  • PDF

Composite Adaptive Dual Fuzzy Control of Nonlinear Systems (비선형 시스템의 이원적 합성 적응 퍼지 제어)

  • Kim, Sung-Wan;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.141-144
    • /
    • 2003
  • A composite adaptive dual fuzzy controller combining the approximate mathematical model, linguistic model description, linguistic control rules and identification modeling error into a single adaptive fuzzy controller is developed for a nonlinear system. It ensures the system output tracks the desired reference value and excites the plant sufficiently for accelerating the parameter estimation process so that the control performances are greatly improved. Using the Lyapunov synthesis approach, proposed controller is analyzed and simulation results verify the effectiveness of the proposed control algorithm.

  • PDF

Free Vibration of a Thin Plate with Small Deflections by Semi-Analytical Approach (반해석적 방법에 의한 작은 변위를 가지는 얇은판의 자유진동해석)

  • 최덕기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1967-1973
    • /
    • 1994
  • The free vibration of a thin plate with three different boundary conditions is discussed in this paper. A semi-analytical approach to the plate problems has been exploited using computer algebra system(CAS). The approximate solutions are assumed as algebraic polynomials that satisfy the appropriate boundary conditions. In order to solve problems, Galerkin method is used, which is known as an ineffective tool for practical engineering problems, being involved with a large number of multiple integration and differentiation. All the admissible functions used in this paper are generated automatically by CAS otherwise a tedious algebraic manipulations should be done by hand. One, six and fifteen-term solutions in terms of frequency parameters are presented and compared with exact solutions. Even using one-term solution, the comparison with existing data shows good agreement and accuracy of the present method.